热门问题
时间线
聊天
视角
普里姆算法
来自维基百科,自由的百科全书
Remove ads
普里姆算法(英语:Prim's algorithm)是图论中的一种贪心算法,可在一个加权连通图中找到其最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克发现;并在1957年由美国计算机科学家罗伯特·C·普里姆独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。
| 此条目或许过多或不当使用受版权保护的文字、图像及多媒体文件。 (2020年4月8日) | 
描述
从单一顶点开始,普里姆算法按照以下步骤逐步扩大树中所含顶点的数目,直到遍及连通图的所有顶点。
- 输入:一个加权连通图,其中顶点集合为,边集合为;
- 初始化:,其中为集合中的任一节点(起始点),;
- 重复下列操作,直到:
- 在集合中选取权值最小的边,其中为集合中的元素,而则是中没有加入的顶点(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
- 将加入集合中,将加入集合中;
 
- 输出:使用集合和来描述所得到的最小生成树。
Remove ads
时间复杂度
通过邻接矩阵图表示的简易实现中,找到所有最小权边共需的运行时间。使用简单的二叉堆与邻接表来表示的话,普里姆算法的运行时间则可缩减为,其中为连通图的边集大小,为点集大小。如果使用较为复杂的斐波那契堆,则可将运行时间进一步缩短为,这在连通图足够密集时(当满足条件时),可较显著地提高运行速度。
Remove ads
例示
证明
已知图G的边数量为numEdge, 顶点数量为numVert, prim生成的树为T0, 最小生成树(MST)为Tmin
则有,cost(Tmin)<=cost(T0)
设: T0 的 numVert-1 条边按照权重由小到大排列依次为:ek1, ek2, ek3, ..., ekn
Tmin 的 numVert-1 条边按照权重由小到大排列依次为:eg1, eg2, eg3, ..., egn
其中n=numVert-1
两棵树的边从小到大权重比较,设第一个属于 T0 但不属于 Tmin 的边为 ed1, 连接该边的两个顶点为 (vs, ve1)
同时存在第一个属于 Tmin 但不属于 T0 且以vs为顶点的边,记为 ed2, 连接该边的两个顶点为 (vs, ve2)。
两个边的起点相同。由Prim算法性质可知,w(ed2) >= w(ed1)
此时,在 Tmin 中删除 ed2 ,添加 ed1,边的数量和顶点数量均不变,且不存在环,因此得到新的生成树Tnew,且cost(Tmin)>=cost(Tnew)
又因为 Tmin 是MST 所以 cost(Tmin)=cost(Tnew)。
以此类推,cost(Tmin)=cost(T0)
T0是最小生成树, 得证.
Remove ads
各语言程序代码
部分主程序段:
procedure prim(v0:integer);
var
   lowcost,closest:array[1..maxn] of integer;
   i,j,k,min,ans:integer;
   for i:=1 to n do
    begin
     lowcost[i]:=cost[v0,i];
     closest[i]:=v0;
   end;
   for i:=1 to n-1 do
     begin
      min:=maxint;
      for j:=1 to n do
         if (lowcost[j]<min) and (lowcost[j]<>0) then
          begin
            min:=lowcost[j];
            k:=j;
         end;
      inc(ans, lowcost[k]);
      lowcost[k]:=0;
      for j:=1 to n do
         if cost[k,j]<lowcost[j] then
          begin
            lowcost[j]:=cost[k,j];
            closest[j]:=k;
         end;
   end;
 writeln(ans);
end;
Remove ads
Remove ads
此份源码使用了堆优化
from queue import PriorityQueue as priority_queue
from math import inf
class Node:
    def __init__(self,id,**kwargs):
        self.id = id
        self.fst = self.lst = None
    def __iter__(self):
        return NodeIterator(self)
    def __repr__(self):
        return "Node(%d)"%self.id
class NodeIterator:
    def __init__(self,Node):
        self.prst = Node.fst
    def __next__(self):
        if self.prst == None:
            raise StopIteration()
        ret = self.prst
        self.prst = self.prst.nxt
        return ret
class Edge:
    def __init__(self,fr,to,**kwargs):
        if fr.fst == None:
            fr.fst = self
        else:
            fr.lst.nxt = self
        fr.lst = self
        self.to = to
        self.nxt = None
        self.w = 1 if 'w' not in kwargs else kwargs['w']
    def __repr__(self):
        return "Edge({},{},w = {})",format(self.fr,self.to,self.w)
class Graph:
    def __init__(self,V):
        self.nodecnt = V
        self.nodes = [Node(i) for i in range(V)]
        self.edges = []
    def add(self,u,v,**kwargs):
        self.edges.append(Edge(self.nodes[u],self.nodes[v],**kwargs))
    def MST_prim(self,begin):
        '''
        prim algorithm on a graph(with heap),
        returns the weight sum of the tree
        or -1 if impossible
        '''
        q = priority_queue()
        vis = [False for _ in range(self.nodecnt)]
        q.put((0,begin))
        ret = 0
        while not q.empty():
            prst = q.get()
            if vis[prst[1]]:
                continue
            vis[prst[1]] = True
            ret += prst[0]
            for i in self.nodes[prst[1]]:
                if not vis[i.to.id]:
                    q.put((i.w,i.to.id))
        if all(vis):
            return ret
        else:
            return -1
Remove ads
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
public class Prim {
    public static List<Vertex> vertexList = new ArrayList<Vertex>();//结点集
    public static List<Edge> EdgeQueue = new ArrayList<Edge>();//边集
    public static List<Vertex> newVertex = new ArrayList<Vertex>();//已经 访问过的结点
    public static void main(String[] args) {
        primTree();
    }
    public static void buildGraph() {
        Vertex v1 = new Vertex("a");
        Prim.vertexList.add(v1);
        Vertex v2 = new Vertex("b");
        Prim.vertexList.add(v2);
        Vertex v3 = new Vertex("c");
        Prim.vertexList.add(v3);
        Vertex v4 = new Vertex("d");
        Prim.vertexList.add(v4);
        Vertex v5 = new Vertex("e");
        Prim.vertexList.add(v5);
        addEdge(v1, v2, 6);
        addEdge(v1, v3, 7);
        addEdge(v2, v3, 8);
        addEdge(v2, v5, 4);
        addEdge(v2, v4, 5);
        addEdge(v3, v4, 3);
        addEdge(v3, v5, 9);
        addEdge(v5, v4, 7);
        addEdge(v5, v1, 2);
        addEdge(v4, v2, 2);
    }
    public static void addEdge(Vertex a, Vertex b, int w) {
        Edge e = new Edge(a, b, w);
        Prim.EdgeQueue.add(e);
    }
    public static void primTree() {
        buildGraph();
        Vertex start = vertexList.get(0);
        newVertex.add(start);
        for (int n = 0; n < vertexList.size() - 1; n++) {
            Vertex temp = new Vertex(start.key);
            Edge tempedge = new Edge(start, start, 1000);
            for (Vertex v : newVertex) {
                for (Edge e : EdgeQueue) {
                    if (e.start == v && !containVertex(e.end)) {
                        if (e.key < tempedge.key) {
                            temp = e.end;
                            tempedge = e;
                        }
                    }
                }
            }
            newVertex.add(temp);
        }
        Iterator it = newVertex.iterator();
        while (it.hasNext()) {
            Vertex v = (Vertex) it.next();
            System.out.println(v.key);
        }
    }
    public static boolean containVertex(Vertex vte) {
        for (Vertex v : newVertex) {
            if (v.key.equals(vte.key))
                return true;
        }
        return false;
    }
}
class Vertex {
    String key;
    Vertex(String key) {
        this.key = key;
    }
}
class Edge {
    Vertex start;
    Vertex end;
    int key;
    Edge(Vertex start, Vertex end, int key) {
        this.start = start;
        this.end  = end;
        this.key = key;
    }
}
Remove ads
参考
普林演算法与迪科斯彻演算法的策略相似。
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads








