أفضل الأسئلة
الجدول الزمني
الدردشة
السياق

دالتان سقفية وأرضية

من ويكيبيديا، الموسوعة الحرة

دالتان سقفية وأرضية
Remove ads

في الرياضيات و علم الحاسوب، الدالتان السقفية والأرضية[1] (بالإنجليزية: Ceiling and floor functions) هما دالتان تربطان عدداً حقيقياً ما بأكبر عدد صحيح سابق أو أصغر عدد صحيح تابع على التوالي، حيث:

  • السقف لعدد حقيقي ما x هو أصغر عدد صحيح ولكن ليس أصغر من x. فسقف العدد 2.15 هو 3، أي أصغر عدد صحيح ليس أصغر من 2.15.
  • بينما الأرضية فهو أكبر عدد صحيح ليس أكبر من x. فصحيح العدد 2.6 هو 2، أي أكبر عدد صحيح ليس أكبر من 2.6.
Thumb
دالة الجزء الصحيح
Thumb
دالة السقف
Remove ads

الرموز المستعملة

استعمل كارل فريدريش غاوس في عام 1808 رمز المعقوفتين [x] للدلالة على الجزء الصحيح في برهانه الثالث لمبرهنة التربيعية التبادلية. بقي هذا الرمز هو المرجع حتى أدخل كينيث ايفرسون في عام 1962 الكلمتين الإنجليزيتين Floor و Ceiling مع الرمزين الدالين عليهما x و x في كتاب له تحت عنوان لغة البرمجة (A Programming Language).[2]

أمثلة

مزيد من المعلومات الجزء الصحيح ...
Remove ads

تطبيقات

الملخص
السياق

ثابتة أويلر

هناك صيغ رياضياتية تتعلق بثابتة أويلر-ماسكيروني γ = 0.57721 56649 ... تحتوي على دالتي الجزء الصحيح والسقف. على سبيل المثال[3]

و

معضلات حلت

طرح رامانجن المعضلة التالية لجريدة للجمعية الرياضياتية الهندية.[4]

إذا كان n عددا صحيحا موجبا، أثبت أن:

(i)    

(ii)    

(iii)    

معضلات لم تحل بعد

انظر إلى معضلة ويرينغ.

Remove ads

مراجع

وصلات خارجية

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads