أفضل الأسئلة
الجدول الزمني
الدردشة
السياق

معادلة وسيطية

من ويكيبيديا، الموسوعة الحرة

معادلة وسيطية
Remove ads

في الرياضيات، المعادلة الوسيطية أو المعادلة البارامترية هي طريقة تعريف علاقة رياضية بدلالة وسائط (أو بارامترات) مما يجعل العلاقة الأساسية في صورة أبسط، وأحد الأمثلة على المعادلات الوسيطية هو استخدام وسيط زمني لتحديد موضع جسيم متحرك أو سرعته.[1][2][3]

Thumb
منحنى الفراشة هو مثال على المعادلات البارامترية.

أمثلة في المستوى ثنائي الأبعاد

القطع المكافئ

الدائرة

تمثل الدائرة الواحدية بالمعادلة الديكارتية التالية:

هذه المعادلة يمكن أن يعبر عنها بالمعادلة الوسيطية التالية:

Remove ads

أمثلة في الفضاء ثلاثي الأبعاد

الملخص
السياق

الحلزون أو اللولب

Thumb
لولب وسيطي

تستعمل المعادلات الوسيطية في وصف المنحنيات في الفضاء ثلاثي الأبعاد. على سبيل المثال، المعادلات الثلاث

منحنى ثلاثي الأبعاد، وهو اللولب الذي يسمى أحيانًا بالحلزون (يطلق الحلزون في غالب الأحيان على spiral). يساوي نصف قطره a ويصعد بقيمة 2πb عند كل دورة. يُلاحظ أن هذه المعادلات تشبه معادلات الدائرة في المستوى (بأخذ b مساويا للصفر). عادة ما تكتب المعادلات الثلاثة أعلاه على الشكل التالي:

Remove ads

السطوح

التحويل من معادلتين وسيطيتين إلى معادلة واحدة

انظر إلى نظرية المعادلات

انظر أيضا

مراجع

وصلات خارجية

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads