Пры рашэнні задач часта бывае карысна ведаць дакладныя алгебраічныя выразы для значэнняў трыганаметрычных функцый, у першую чаргу для таго, каб прадставіць рашэнне праз радыкалы (карані), што адкрывае магчымасці для далейшага спрашчэння. Значэнні косінуса і сінуса вуглоў, кратных 30 і 45 градусам, на адзінкавай акружнасці. Усе значэнні сінусаў, косінусаў і тангенсаў вуглоў, кратных 3°, выражаюцца ў радыкалах. Гэтыя значэнні атрыманы шляхам прымянення тоеснасцей для палавіннага вугла, двайнога вугла, а таксама формул для сумы і рознасці вуглоў са значэннямі 0°, 30°, 36°, і 45°. Заўвага: градусы і радыяны звязаны суадносінамі 1° = π/180 радыян. Remove adsРацыянальныя значэнні трыганаметрычных функцый Згодна з тэарэмай Нівена[1], адзінымі рацыянальнымі значэннямі функцыі сінуса пры рацыянальным аргуменце (у градусах) з'яўляюцца лікі 0, 1/2, і 1. Стандартныя «школьныя» вуглы Асноўныя вострыя вуглы Значэнні сінуса, косінуса, тангенса, катангенса, секанса і касеканса для найбольш ужывальных вострых вуглоў прыведзены ў табліцы. («∞» азначае, што функцыя ў таком пункце не вызначана, а ў яго наваколлі імкнецца да бесканечнасці). Больш інфармацыі , ... α {\displaystyle \alpha \,\!} 0°(0 рад)30° (π/6)45° (π/4)60° (π/3)90° (π/2)180° (π)270° (3π/2)360° (2π) sin α {\displaystyle \sin \alpha \,\!} 0 {\displaystyle {0}\,\!} 1 2 {\displaystyle {\frac {1}{2}}\,\!} 2 2 {\displaystyle {\frac {\sqrt {2}}{2}}\,\!} 3 2 {\displaystyle {\frac {\sqrt {3}}{2}}\,\!} 1 {\displaystyle {1}\,\!} 0 {\displaystyle {0}\,\!} − 1 {\displaystyle {-1}\,\!} 0 {\displaystyle {0}\,\!} cos α {\displaystyle \cos \alpha \,\!} 1 {\displaystyle {1}\,\!} 3 2 {\displaystyle {\frac {\sqrt {3}}{2}}\,\!} 2 2 {\displaystyle {\frac {\sqrt {2}}{2}}\,\!} 1 2 {\displaystyle {\frac {1}{2}}\,\!} 0 {\displaystyle {0}\,\!} − 1 {\displaystyle {-1}\,\!} 0 {\displaystyle {0}\,\!} 1 {\displaystyle {1}\,\!} tg α {\displaystyle \operatorname {tg} \alpha \,\!} 0 {\displaystyle {0}\,\!} 3 3 {\displaystyle {\frac {\sqrt {3}}{3}}\,\!} 1 {\displaystyle {1}\,\!} 3 {\displaystyle {\sqrt {3}}\,\!} ∞ {\displaystyle {\infty }\,\!} 0 {\displaystyle {0}\,\!} ∞ {\displaystyle {\infty }\,\!} 0 {\displaystyle {0}\,\!} ctg α {\displaystyle \operatorname {ctg} \alpha \,\!} ∞ {\displaystyle {\infty }\,\!} 3 {\displaystyle {\sqrt {3}}\,\!} 1 {\displaystyle {1}\,\!} 3 3 {\displaystyle {\frac {\sqrt {3}}{3}}\,\!} 0 {\displaystyle {0}\,\!} ∞ {\displaystyle {\infty }\,\!} 0 {\displaystyle {0}\,\!} ∞ {\displaystyle {\infty }\,\!} sec α {\displaystyle \sec \alpha \,\!} 1 {\displaystyle {1}\,\!} 2 3 3 {\displaystyle {\frac {2{\sqrt {3}}}{3}}\,\!} 2 {\displaystyle {\sqrt {2}}\,\!} 2 {\displaystyle {2}\,\!} ∞ {\displaystyle {\infty }\,\!} − 1 {\displaystyle {-1}\,\!} ∞ {\displaystyle {\infty }\,\!} 1 {\displaystyle {1}\,\!} cosec α {\displaystyle \operatorname {cosec} \alpha \,\!} ∞ {\displaystyle {\infty }\,\!} 2 {\displaystyle {2}\,\!} 2 {\displaystyle {\sqrt {2}}\,\!} 2 3 3 {\displaystyle {\frac {2{\sqrt {3}}}{3}}\,\!} 1 {\displaystyle {1}\,\!} ∞ {\displaystyle {\infty }\,\!} − 1 {\displaystyle {-1}\,\!} ∞ {\displaystyle {\infty }\,\!} Закрыць Значэнні трыганаметрычных функцый вуглоў, кратных 30° ці 45° α {\displaystyle \alpha \,} 2 π 3 = 120 ∘ {\displaystyle {\frac {2\pi }{3}}=120^{\circ }} 3 π 4 = 135 ∘ {\displaystyle {\frac {3\pi }{4}}=135^{\circ }} 5 π 6 = 150 ∘ {\displaystyle {\frac {5\pi }{6}}=150^{\circ }} 7 π 6 = 210 ∘ {\displaystyle {\frac {7\pi }{6}}=210^{\circ }} 5 π 4 = 225 ∘ {\displaystyle {\frac {5\pi }{4}}=225^{\circ }} 4 π 3 = 240 ∘ {\displaystyle {\frac {4\pi }{3}}=240^{\circ }} 5 π 3 = 300 ∘ {\displaystyle {\frac {5\pi }{3}}=300^{\circ }} 7 π 4 = 315 ∘ {\displaystyle {\frac {7\pi }{4}}=315^{\circ }} 11 π 6 = 330 ∘ {\displaystyle {\frac {11\pi }{6}}=330^{\circ }} sin α {\displaystyle \sin \alpha \,} 3 2 {\displaystyle {\frac {\sqrt {3}}{2}}} 2 2 {\displaystyle {\frac {\sqrt {2}}{2}}} 1 2 {\displaystyle {\frac {1}{2}}} − 1 2 {\displaystyle -{\frac {1}{2}}} − 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}}} − 3 2 {\displaystyle -{\frac {\sqrt {3}}{2}}} − 3 2 {\displaystyle -{\frac {\sqrt {3}}{2}}} − 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}}} − 1 2 {\displaystyle -{\frac {1}{2}}} cos α {\displaystyle \cos \alpha \,} − 1 2 {\displaystyle -{\frac {1}{2}}} − 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}}} − 3 2 {\displaystyle -{\frac {\sqrt {3}}{2}}} − 3 2 {\displaystyle -{\frac {\sqrt {3}}{2}}} − 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}}} − 1 2 {\displaystyle -{\frac {1}{2}}} 1 2 {\displaystyle {\frac {1}{2}}} 2 2 {\displaystyle {\frac {\sqrt {2}}{2}}} 3 2 {\displaystyle {\frac {\sqrt {3}}{2}}} tg α {\displaystyle \operatorname {tg} \,\alpha } − 3 {\displaystyle -{\sqrt {3}}} − 1 {\displaystyle {-1}\,\!} − 3 3 {\displaystyle -{\frac {\sqrt {3}}{3}}} 3 3 {\displaystyle {\frac {\sqrt {3}}{3}}} 1 {\displaystyle {1}\,\!} 3 {\displaystyle {\sqrt {3}}} − 3 {\displaystyle -{\sqrt {3}}} − 1 {\displaystyle {-1}\,\!} − 3 3 {\displaystyle -{\frac {\sqrt {3}}{3}}} ctg α {\displaystyle \operatorname {ctg} \,\alpha } − 3 3 {\displaystyle -{\frac {\sqrt {3}}{3}}} − 1 {\displaystyle {-1}\,\!} − 3 {\displaystyle -{\sqrt {3}}} 3 {\displaystyle {\sqrt {3}}} 1 {\displaystyle {1}\,\!} 3 3 {\displaystyle {\frac {\sqrt {3}}{3}}} − 3 3 {\displaystyle -{\frac {\sqrt {3}}{3}}} − 1 {\displaystyle {-1}\,\!} − 3 {\displaystyle -{\sqrt {3}}} Значэнні для іншых распаўсюджаных вуглоў α {\displaystyle \alpha \,} π 12 = 15 ∘ {\displaystyle {\frac {\pi }{12}}=15^{\circ }} π 10 = 18 ∘ {\displaystyle {\frac {\pi }{10}}=18^{\circ }} π 8 = 22 , 5 ∘ {\displaystyle {\frac {\pi }{8}}=22{,}5^{\circ }} π 5 = 36 ∘ {\displaystyle {\frac {\pi }{5}}=36^{\circ }} 3 π 10 = 54 ∘ {\displaystyle {\frac {3\,\pi }{10}}=54^{\circ }} 3 π 8 = 67 , 5 ∘ {\displaystyle {\frac {3\,\pi }{8}}=67{,}5^{\circ }} 2 π 5 = 72 ∘ {\displaystyle {\frac {2\,\pi }{5}}=72^{\circ }} 5 π 12 = 75 ∘ {\displaystyle {\frac {5\,\pi }{12}}=75^{\circ }} sin α {\displaystyle \sin \alpha \,} 3 − 1 2 2 {\displaystyle {\frac {{\sqrt {3}}-1}{2\,{\sqrt {2}}}}} 5 − 1 4 {\displaystyle {\frac {{\sqrt {5}}-1}{4}}} 2 − 2 2 {\displaystyle {\frac {\sqrt {2-{\sqrt {2}}}}{2}}} 5 − 5 2 2 {\displaystyle {\frac {\sqrt {5-{\sqrt {5}}}}{2\,{\sqrt {2}}}}} 5 + 1 4 {\displaystyle {\frac {{\sqrt {5}}+1}{4}}} 2 + 2 2 {\displaystyle {\frac {\sqrt {2+{\sqrt {2}}}}{2}}} 5 + 5 2 2 {\displaystyle {\frac {\sqrt {5+{\sqrt {5}}}}{2\,{\sqrt {2}}}}} 3 + 1 2 2 {\displaystyle {\frac {{\sqrt {3}}+1}{2\,{\sqrt {2}}}}} cos α {\displaystyle \cos \alpha \,} 3 + 1 2 2 {\displaystyle {\frac {{\sqrt {3}}+1}{2\,{\sqrt {2}}}}} 5 + 5 2 2 {\displaystyle {\frac {\sqrt {5+{\sqrt {5}}}}{2\,{\sqrt {2}}}}} 2 + 2 2 {\displaystyle {\frac {\sqrt {2+{\sqrt {2}}}}{2}}} 5 + 1 4 {\displaystyle {\frac {{\sqrt {5}}+1}{4}}} 5 − 5 2 2 {\displaystyle {\frac {\sqrt {5-{\sqrt {5}}}}{2\,{\sqrt {2}}}}} 2 − 2 2 {\displaystyle {\frac {\sqrt {2-{\sqrt {2}}}}{2}}} 5 − 1 4 {\displaystyle {\frac {{\sqrt {5}}-1}{4}}} 3 − 1 2 2 {\displaystyle {\frac {{\sqrt {3}}-1}{2\,{\sqrt {2}}}}} tg α {\displaystyle \operatorname {tg} \,\alpha } 2 − 3 {\displaystyle 2-{\sqrt {3}}} 1 − 2 5 {\displaystyle {\sqrt {1-{\frac {2}{\sqrt {5}}}}}} 2 − 1 {\displaystyle {\sqrt {2}}-1} 5 − 2 5 {\displaystyle {\sqrt {5-2\,{\sqrt {5}}}}} 1 + 2 5 {\displaystyle {\sqrt {1+{\frac {2}{\sqrt {5}}}}}} 2 + 1 {\displaystyle {\sqrt {2}}+1} 5 + 2 5 {\displaystyle {\sqrt {5+2\,{\sqrt {5}}}}} 2 + 3 {\displaystyle 2+{\sqrt {3}}} ctg α {\displaystyle \operatorname {ctg} \,\alpha } 2 + 3 {\displaystyle 2+{\sqrt {3}}} 5 + 2 5 {\displaystyle {\sqrt {5+2\,{\sqrt {5}}}}} 2 + 1 {\displaystyle {\sqrt {2}}+1} 1 + 2 5 {\displaystyle {\sqrt {1+{\frac {2}{\sqrt {5}}}}}} 5 − 2 5 {\displaystyle {\sqrt {5-2\,{\sqrt {5}}}}} 2 − 1 {\displaystyle {\sqrt {2}}-1} 1 − 2 5 {\displaystyle {\sqrt {1-{\frac {2}{\sqrt {5}}}}}} 2 − 3 {\displaystyle 2-{\sqrt {3}}} Remove adsПашыраны спіс значэнняў трыганаметрычных функцый sin π 60 = cos 29 π 60 = sin 3 ∘ = cos 87 ∘ = 2 ( 3 + 1 ) ( 5 − 1 ) − 2 ( 3 − 1 ) 5 + 5 16 , {\displaystyle \sin {\frac {\pi }{60}}=\cos {\frac {29\,\pi }{60}}=\sin 3^{\circ }=\cos 87^{\circ }={\frac {{\sqrt {2}}({\sqrt {3}}+1)({\sqrt {5}}-1)-2({\sqrt {3}}-1){\sqrt {5+{\sqrt {5}}}}}{16}},} cos π 60 = sin 29 π 60 = cos 3 ∘ = sin 87 ∘ = 2 ( 3 − 1 ) ( 5 − 1 ) + 2 ( 3 + 1 ) 5 + 5 16 , {\displaystyle \cos {\frac {\pi }{60}}=\sin {\frac {29\,\pi }{60}}=\cos 3^{\circ }=\sin 87^{\circ }={\frac {{\sqrt {2}}({\sqrt {3}}-1)({\sqrt {5}}-1)+2({\sqrt {3}}+1){\sqrt {5+{\sqrt {5}}}}}{16}},} tg π 60 = ctg 29 π 60 = tg 3 ∘ = ctg 87 ∘ = 2 ( 5 + 2 ) − 3 ( 5 + 3 ) + ( 2 − 3 ) ( 3 ( 5 + 1 ) − 2 ) 5 − 2 5 2 , {\displaystyle \operatorname {tg} {\frac {\pi }{60}}=\operatorname {ctg} {\frac {29\,\pi }{60}}=\operatorname {tg} 3^{\circ }=\operatorname {ctg} 87^{\circ }={\frac {2({\sqrt {5}}+2)-{\sqrt {3}}({\sqrt {5}}+3)+(2-{\sqrt {3}})({\sqrt {3}}({\sqrt {5}}+1)-2){\sqrt {5-2{\sqrt {5}}}}}{2}},} ctg π 60 = tg 29 π 60 = ctg 3 ∘ = tg 87 ∘ = 2 ( 2 ( 5 + 2 ) + 3 ( 5 + 3 ) ) + ( 3 ( 5 − 1 ) + 2 ) 2 ( 25 + 11 5 ) 4 , {\displaystyle \operatorname {ctg} {\frac {\pi }{60}}=\operatorname {tg} {\frac {29\,\pi }{60}}=\operatorname {ctg} 3^{\circ }=\operatorname {tg} 87^{\circ }={\frac {2(2({\sqrt {5}}+2)+{\sqrt {3}}({\sqrt {5}}+3))+({\sqrt {3}}({\sqrt {5}}-1)+2){\sqrt {2(25+11{\sqrt {5}})}}}{4}},} sin π 30 = cos 7 π 15 = sin 6 ∘ = cos 84 ∘ = 6 ( 5 − 5 ) − 5 − 1 8 , {\displaystyle \sin {\frac {\pi }{30}}=\cos {\frac {7\,\pi }{15}}=\sin 6^{\circ }=\cos 84^{\circ }={\frac {{\sqrt {6(5-{\sqrt {5}})}}-{\sqrt {5}}-1}{8}},} cos π 30 = sin 7 π 15 = cos 6 ∘ = sin 84 ∘ = 2 ( 5 − 5 ) + 3 ( 5 + 1 ) 8 , {\displaystyle \cos {\frac {\pi }{30}}=\sin {\frac {7\,\pi }{15}}=\cos 6^{\circ }=\sin 84^{\circ }={\frac {{\sqrt {2(5-{\sqrt {5}})}}+{\sqrt {3}}({\sqrt {5}}+1)}{8}},} tg π 30 = ctg 7 π 15 = tg 6 ∘ = ctg 84 ∘ = 2 ( 5 − 5 ) − 3 ( 5 − 1 ) 2 , {\displaystyle \operatorname {tg} {\frac {\pi }{30}}=\operatorname {ctg} {\frac {7\,\pi }{15}}=\operatorname {tg} 6^{\circ }=\operatorname {ctg} 84^{\circ }={\frac {{\sqrt {2(5-{\sqrt {5}})}}-{\sqrt {3}}({\sqrt {5}}-1)}{2}},} ctg π 30 = tg 7 π 15 = ctg 6 ∘ = tg 84 ∘ = 2 ( 25 + 11 5 ) + 3 ( 5 + 3 ) 2 , {\displaystyle \operatorname {ctg} {\frac {\pi }{30}}=\operatorname {tg} {\frac {7\,\pi }{15}}=\operatorname {ctg} 6^{\circ }=\operatorname {tg} 84^{\circ }={\frac {{\sqrt {2(25+11{\sqrt {5}})}}+{\sqrt {3}}({\sqrt {5}}+3)}{2}},} sin π 20 = cos 9 π 20 = sin 9 ∘ = cos 81 ∘ = 2 ( 5 + 1 ) − 2 5 − 5 8 , {\displaystyle \sin {\frac {\pi }{20}}=\cos {\frac {9\,\pi }{20}}=\sin 9^{\circ }=\cos 81^{\circ }={\frac {{\sqrt {2}}({\sqrt {5}}+1)-2{\sqrt {5-{\sqrt {5}}}}}{8}},} cos π 20 = sin 9 π 20 = cos 9 ∘ = sin 81 ∘ = 2 ( 5 + 1 ) + 2 5 − 5 8 , {\displaystyle \cos {\frac {\pi }{20}}=\sin {\frac {9\,\pi }{20}}=\cos 9^{\circ }=\sin 81^{\circ }={\frac {{\sqrt {2}}({\sqrt {5}}+1)+2{\sqrt {5-{\sqrt {5}}}}}{8}},} tg π 20 = ctg 9 π 20 = tg 9 ∘ = ctg 81 ∘ = 5 + 1 − 5 + 2 5 , {\displaystyle \operatorname {tg} {\frac {\pi }{20}}=\operatorname {ctg} {\frac {9\,\pi }{20}}=\operatorname {tg} 9^{\circ }=\operatorname {ctg} 81^{\circ }={{\sqrt {5}}+1-{\sqrt {5+2{\sqrt {5}}}}},} ctg π 20 = tg 9 π 20 = ctg 9 ∘ = tg 81 ∘ = 5 + 1 + 5 + 2 5 , {\displaystyle \operatorname {ctg} {\frac {\pi }{20}}=\operatorname {tg} {\frac {9\,\pi }{20}}=\operatorname {ctg} 9^{\circ }=\operatorname {tg} 81^{\circ }={{\sqrt {5}}+1+{\sqrt {5+2{\sqrt {5}}}}},} sin π 15 = cos 13 π 30 = sin 12 ∘ = cos 78 ∘ = 2 ( 5 + 5 ) − 3 ( 5 − 1 ) 8 , {\displaystyle \sin {\frac {\pi }{15}}=\cos {\frac {13\,\pi }{30}}=\sin 12^{\circ }=\cos 78^{\circ }={\frac {{\sqrt {2(5+{\sqrt {5}})}}-{\sqrt {3}}({\sqrt {5}}-1)}{8}},} cos π 15 = sin 13 π 30 = cos 12 ∘ = sin 78 ∘ = 6 ( 5 + 5 ) + 5 − 1 8 , {\displaystyle \cos {\frac {\pi }{15}}=\sin {\frac {13\,\pi }{30}}=\cos 12^{\circ }=\sin 78^{\circ }={\frac {{\sqrt {6(5+{\sqrt {5}})}}+{\sqrt {5}}-1}{8}},} tg π 15 = ctg 13 π 30 = tg 12 ∘ = ctg 78 ∘ = 3 ( 3 − 5 ) − 2 ( 25 − 11 5 ) 2 , {\displaystyle \operatorname {tg} {\frac {\pi }{15}}=\operatorname {ctg} {\frac {13\,\pi }{30}}=\operatorname {tg} 12^{\circ }=\operatorname {ctg} 78^{\circ }={\frac {{\sqrt {3}}(3-{\sqrt {5}})-{\sqrt {2(25-11{\sqrt {5}})}}}{2}},} ctg π 15 = tg 13 π 30 = ctg 12 ∘ = tg 78 ∘ = 3 ( 5 + 1 ) + 2 ( 5 + 5 ) 2 , {\displaystyle \operatorname {ctg} {\frac {\pi }{15}}=\operatorname {tg} {\frac {13\,\pi }{30}}=\operatorname {ctg} 12^{\circ }=\operatorname {tg} 78^{\circ }={\frac {{\sqrt {3}}({\sqrt {5}}+1)+{\sqrt {2(5+{\sqrt {5}})}}}{2}},} sin 7 π 60 = cos 23 π 60 = sin 21 ∘ = cos 69 ∘ = − 2 ( 3 − 1 ) ( 5 + 1 ) + 2 ( 3 + 1 ) 5 − 5 16 , {\displaystyle \sin {\frac {7\,\pi }{60}}=\cos {\frac {23\,\pi }{60}}=\sin 21^{\circ }=\cos 69^{\circ }={\frac {-{\sqrt {2}}({\sqrt {3}}-1)({\sqrt {5}}+1)+2({\sqrt {3}}+1){\sqrt {5-{\sqrt {5}}}}}{16}},} cos 7 π 60 = sin 23 π 60 = cos 21 ∘ = sin 69 ∘ = 2 ( 3 + 1 ) ( 5 + 1 ) + 2 ( 3 − 1 ) 5 − 5 16 , {\displaystyle \cos {\frac {7\,\pi }{60}}=\sin {\frac {23\,\pi }{60}}=\cos 21^{\circ }=\sin 69^{\circ }={\frac {{\sqrt {2}}({\sqrt {3}}+1)({\sqrt {5}}+1)+2({\sqrt {3}}-1){\sqrt {5-{\sqrt {5}}}}}{16}},} tg 7 π 60 = ctg 23 π 60 = tg 21 ∘ = ctg 69 ∘ = 2 ( 2 ( 5 − 2 ) − 3 ( 3 − 5 ) ) + ( 3 ( 5 + 1 ) − 2 ) 2 ( 25 − 11 5 ) 4 , {\displaystyle \operatorname {tg} {\frac {7\,\pi }{60}}=\operatorname {ctg} {\frac {23\,\pi }{60}}=\operatorname {tg} 21^{\circ }=\operatorname {ctg} 69^{\circ }={\frac {2(2({\sqrt {5}}-2)-{\sqrt {3}}(3-{\sqrt {5}}))+({\sqrt {3}}({\sqrt {5}}+1)-2){\sqrt {2(25-11{\sqrt {5}})}}}{4}},} ctg 7 π 60 = tg 23 π 60 = ctg 21 ∘ = tg 69 ∘ = 2 ( 2 ( 5 − 2 ) + 3 ( 3 − 5 ) ) + ( 3 ( 5 + 1 ) + 2 ) 2 ( 25 − 11 5 ) 4 , {\displaystyle \operatorname {ctg} {\frac {7\,\pi }{60}}=\operatorname {tg} {\frac {23\,\pi }{60}}=\operatorname {ctg} 21^{\circ }=\operatorname {tg} 69^{\circ }={\frac {2(2({\sqrt {5}}-2)+{\sqrt {3}}(3-{\sqrt {5}}))+({\sqrt {3}}({\sqrt {5}}+1)+2){\sqrt {2(25-11{\sqrt {5}})}}}{4}},} sin 2 π 15 = cos 11 π 30 = sin 24 ∘ = cos 66 ∘ = 3 ( 5 + 1 ) − 2 ( 5 − 5 ) 8 , {\displaystyle \sin {\frac {2\,\pi }{15}}=\cos {\frac {11\,\pi }{30}}=\sin 24^{\circ }=\cos 66^{\circ }={\frac {{\sqrt {3}}({\sqrt {5}}+1)-{\sqrt {2(5-{\sqrt {5}})}}}{8}},} cos 2 π 15 = sin 11 π 30 = cos 24 ∘ = sin 66 ∘ = 5 + 1 + 6 ( 5 − 5 ) 8 , {\displaystyle \cos {\frac {2\,\pi }{15}}=\sin {\frac {11\,\pi }{30}}=\cos 24^{\circ }=\sin 66^{\circ }={\frac {{\sqrt {5}}+1+{\sqrt {6(5-{\sqrt {5}})}}}{8}},} tg 2 π 15 = ctg 11 π 30 = tg 24 ∘ = ctg 66 ∘ = − 3 ( 3 + 5 ) + 2 ( 25 + 11 5 ) 2 , {\displaystyle \operatorname {tg} {\frac {2\,\pi }{15}}=\operatorname {ctg} {\frac {11\,\pi }{30}}=\operatorname {tg} 24^{\circ }=\operatorname {ctg} 66^{\circ }={\frac {-{\sqrt {3}}(3+{\sqrt {5}})+{\sqrt {2(25+11{\sqrt {5}})}}}{2}},} ctg 2 π 15 = tg 11 π 30 = ctg 24 ∘ = tg 66 ∘ = 3 ( 5 − 1 ) + 2 ( 5 − 5 ) 2 , {\displaystyle \operatorname {ctg} {\frac {2\,\pi }{15}}=\operatorname {tg} {\frac {11\,\pi }{30}}=\operatorname {ctg} 24^{\circ }=\operatorname {tg} 66^{\circ }={\frac {{\sqrt {3}}({\sqrt {5}}-1)+{\sqrt {2(5-{\sqrt {5}})}}}{2}},} sin 3 π 20 = cos 7 π 20 = sin 27 ∘ = cos 63 ∘ = − 2 ( 5 − 1 ) + 2 5 + 5 8 , {\displaystyle \sin {\frac {3\,\pi }{20}}=\cos {\frac {7\,\pi }{20}}=\sin 27^{\circ }=\cos 63^{\circ }={\frac {-{\sqrt {2}}({\sqrt {5}}-1)+2{\sqrt {5+{\sqrt {5}}}}}{8}},} cos 3 π 20 = sin 7 π 20 = cos 27 ∘ = sin 63 ∘ = 2 ( 5 − 1 ) + 2 5 + 5 8 , {\displaystyle \cos {\frac {3\,\pi }{20}}=\sin {\frac {7\,\pi }{20}}=\cos 27^{\circ }=\sin 63^{\circ }={\frac {{\sqrt {2}}({\sqrt {5}}-1)+2{\sqrt {5+{\sqrt {5}}}}}{8}},} tg 3 π 20 = ctg 7 π 20 = tg 27 ∘ = ctg 63 ∘ = 5 − 1 − 5 − 2 5 , {\displaystyle \operatorname {tg} {\frac {3\,\pi }{20}}=\operatorname {ctg} {\frac {7\,\pi }{20}}=\operatorname {tg} 27^{\circ }=\operatorname {ctg} 63^{\circ }={{\sqrt {5}}-1-{\sqrt {5-2{\sqrt {5}}}}},} ctg 3 π 20 = tg 7 π 20 = ctg 27 ∘ = tg 63 ∘ = 5 − 1 + 5 − 2 5 , {\displaystyle \operatorname {ctg} {\frac {3\,\pi }{20}}=\operatorname {tg} {\frac {7\,\pi }{20}}=\operatorname {ctg} 27^{\circ }=\operatorname {tg} 63^{\circ }={{\sqrt {5}}-1+{\sqrt {5-2{\sqrt {5}}}}},} sin 11 π 60 = cos 19 π 60 = sin 33 ∘ = cos 57 ∘ = 2 ( 3 + 1 ) ( 5 − 1 ) + 2 ( 3 − 1 ) 5 + 5 16 , {\displaystyle \sin {\frac {11\,\pi }{60}}=\cos {\frac {19\,\pi }{60}}=\sin 33^{\circ }=\cos 57^{\circ }={\frac {{\sqrt {2}}({\sqrt {3}}+1)({\sqrt {5}}-1)+2({\sqrt {3}}-1){\sqrt {5+{\sqrt {5}}}}}{16}},} cos 11 π 60 = sin 19 π 60 = cos 33 ∘ = sin 57 ∘ = − 2 ( 3 − 1 ) ( 5 − 1 ) + 2 ( 3 + 1 ) 5 + 5 16 , {\displaystyle \cos {\frac {11\,\pi }{60}}=\sin {\frac {19\,\pi }{60}}=\cos 33^{\circ }=\sin 57^{\circ }={\frac {-{\sqrt {2}}({\sqrt {3}}-1)({\sqrt {5}}-1)+2({\sqrt {3}}+1){\sqrt {5+{\sqrt {5}}}}}{16}},} tg 11 π 60 = ctg 19 π 60 = tg 33 ∘ = ctg 57 ∘ = − 2 ( 5 + 2 ) + 3 ( 3 + 5 ) + ( 2 − 3 ) ( 3 ( 5 + 1 ) − 2 ) 5 − 2 5 2 , {\displaystyle \operatorname {tg} {\frac {11\,\pi }{60}}=\operatorname {ctg} {\frac {19\,\pi }{60}}=\operatorname {tg} 33^{\circ }=\operatorname {ctg} 57^{\circ }={\frac {-2({\sqrt {5}}+2)+{\sqrt {3}}(3+{\sqrt {5}})+(2-{\sqrt {3}})({\sqrt {3}}({\sqrt {5}}+1)-2){\sqrt {5-2{\sqrt {5}}}}}{2}},} ctg 11 π 60 = tg 19 π 60 = ctg 33 ∘ = tg 57 ∘ = − 2 ( 2 ( 5 + 2 ) + 3 ( 3 + 5 ) ) + ( 3 ( 5 − 1 ) + 2 ) 2 ( 25 + 11 5 ) 4 , {\displaystyle \operatorname {ctg} {\frac {11\,\pi }{60}}=\operatorname {tg} {\frac {19\,\pi }{60}}=\operatorname {ctg} 33^{\circ }=\operatorname {tg} 57^{\circ }={\frac {-2(2({\sqrt {5}}+2)+{\sqrt {3}}(3+{\sqrt {5}}))+({\sqrt {3}}({\sqrt {5}}-1)+2){\sqrt {2(25+11{\sqrt {5}})}}}{4}},} sin 13 π 60 = cos 17 π 60 = sin 39 ∘ = cos 51 ∘ = 2 ( 3 + 1 ) ( 5 + 1 ) − 2 ( 3 − 1 ) 5 − 5 16 , {\displaystyle \sin {\frac {13\,\pi }{60}}=\cos {\frac {17\,\pi }{60}}=\sin 39^{\circ }=\cos 51^{\circ }={\frac {{\sqrt {2}}({\sqrt {3}}+1)({\sqrt {5}}+1)-2({\sqrt {3}}-1){\sqrt {5-{\sqrt {5}}}}}{16}},} cos 13 π 60 = sin 17 π 60 = cos 39 ∘ = sin 51 ∘ = 2 ( 3 − 1 ) ( 5 + 1 ) + 2 ( 3 + 1 ) 5 − 5 16 , {\displaystyle \cos {\frac {13\,\pi }{60}}=\sin {\frac {17\,\pi }{60}}=\cos 39^{\circ }=\sin 51^{\circ }={\frac {{\sqrt {2}}({\sqrt {3}}-1)({\sqrt {5}}+1)+2({\sqrt {3}}+1){\sqrt {5-{\sqrt {5}}}}}{16}},} tg 13 π 60 = ctg 17 π 60 = tg 39 ∘ = ctg 51 ∘ = − 2 ( 2 ( 5 − 2 ) + 3 ( 3 − 5 ) ) + ( 3 ( 5 + 1 ) + 2 ) 2 ( 25 − 11 5 ) 4 , {\displaystyle \operatorname {tg} {\frac {13\,\pi }{60}}=\operatorname {ctg} {\frac {17\,\pi }{60}}=\operatorname {tg} 39^{\circ }=\operatorname {ctg} 51^{\circ }={\frac {-2(2({\sqrt {5}}-2)+{\sqrt {3}}(3-{\sqrt {5}}))+({\sqrt {3}}({\sqrt {5}}+1)+2){\sqrt {2(25-11{\sqrt {5}})}}}{4}},} ctg 13 π 60 = tg 17 π 60 = ctg 39 ∘ = tg 51 ∘ = − 2 ( 2 ( 5 − 2 ) − 3 ( 3 − 5 ) ) + ( 3 ( 5 + 1 ) − 2 ) 2 ( 25 − 11 5 ) 4 , {\displaystyle \operatorname {ctg} {\frac {13\,\pi }{60}}=\operatorname {tg} {\frac {17\,\pi }{60}}=\operatorname {ctg} 39^{\circ }=\operatorname {tg} 51^{\circ }={\frac {-2(2({\sqrt {5}}-2)-{\sqrt {3}}(3-{\sqrt {5}}))+({\sqrt {3}}({\sqrt {5}}+1)-2){\sqrt {2(25-11{\sqrt {5}})}}}{4}},} sin 7 π 30 = cos 8 π 30 = sin 42 ∘ = cos 48 ∘ = − ( 5 − 1 ) + 6 ( 5 + 5 ) 8 , {\displaystyle \sin {\frac {7\,\pi }{30}}=\cos {\frac {8\,\pi }{30}}=\sin 42^{\circ }=\cos 48^{\circ }={\frac {-({\sqrt {5}}-1)+{\sqrt {6(5+{\sqrt {5}})}}}{8}},} cos 7 π 30 = sin 8 π 30 = cos 42 ∘ = sin 48 ∘ = 3 ( 5 − 1 ) + 2 ( 5 + 5 ) 8 , {\displaystyle \cos {\frac {7\,\pi }{30}}=\sin {\frac {8\,\pi }{30}}=\cos 42^{\circ }=\sin 48^{\circ }={\frac {{\sqrt {3}}({\sqrt {5}}-1)+{\sqrt {2(5+{\sqrt {5}})}}}{8}},} tg 7 π 30 = ctg 8 π 30 = tg 42 ∘ = ctg 48 ∘ = 3 ( 5 + 1 ) − 2 ( 5 + 5 ) 2 , {\displaystyle \operatorname {tg} {\frac {7\,\pi }{30}}=\operatorname {ctg} {\frac {8\,\pi }{30}}=\operatorname {tg} 42^{\circ }=\operatorname {ctg} 48^{\circ }={\frac {{\sqrt {3}}({\sqrt {5}}+1)-{\sqrt {2(5+{\sqrt {5}})}}}{2}},} ctg 7 π 30 = tg 8 π 30 = ctg 42 ∘ = tg 48 ∘ = 3 ( 3 − 5 ) + 2 ( 25 − 11 5 ) 2 , {\displaystyle \operatorname {ctg} {\frac {7\,\pi }{30}}=\operatorname {tg} {\frac {8\,\pi }{30}}=\operatorname {ctg} 42^{\circ }=\operatorname {tg} 48^{\circ }={\frac {{\sqrt {3}}(3-{\sqrt {5}})+{\sqrt {2(25-11{\sqrt {5}})}}}{2}},} tg π 120 = ctg 59 π 120 = tg 1.5 ∘ = ctg 88.5 ∘ = 8 − 2 ( 2 − 3 ) ( 3 − 5 ) − 2 ( 2 + 3 ) ( 5 + 5 ) 8 + 2 ( 2 − 3 ) ( 3 − 5 ) + 2 ( 2 + 3 ) ( 5 + 5 ) , {\displaystyle \operatorname {tg} {\frac {\pi }{120}}=\operatorname {ctg} {\frac {59\,\pi }{120}}=\operatorname {tg} 1.5^{\circ }=\operatorname {ctg} 88.5^{\circ }={\sqrt {\frac {8-{\sqrt {2(2-{\sqrt {3}})(3-{\sqrt {5}})}}-{\sqrt {2(2+{\sqrt {3}})(5+{\sqrt {5}})}}}{8+{\sqrt {2(2-{\sqrt {3}})(3-{\sqrt {5}})}}+{\sqrt {2(2+{\sqrt {3}})(5+{\sqrt {5}})}}}}},} cos π 240 = sin 119 π 240 = cos 0.75 ∘ = sin 89.25 ∘ = 1 16 ( 2 − 2 + 2 ( 2 ( 5 + 5 ) + 3 ( 1 − 5 ) ) + {\displaystyle \cos {\frac {\pi }{240}}=\sin {\frac {119\,\pi }{240}}=\cos 0.75^{\circ }=\sin 89.25^{\circ }={\frac {1}{16}}\left({\sqrt {2-{\sqrt {2+{\sqrt {2}}}}}}\left({\sqrt {2(5+{\sqrt {5}})}}+{\sqrt {3}}(1-{\sqrt {5}})\right)+\right.} + 2 + 2 + 2 ( 6 ( 5 + 5 ) + 5 − 1 ) ) , {\displaystyle \left.+{\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}\left({\sqrt {6(5+{\sqrt {5}})}}+{\sqrt {5}}-1\right)\right),} Асобыя вуглы cos π 17 = sin 15 π 34 = 1 8 2 ( 2 3 17 − 2 ( 85 + 19 17 ) + 17 + 2 ( 17 − 17 ) + 17 + 15 ) . {\displaystyle \cos {\frac {\pi }{17}}=\sin {\frac {15\,\pi }{34}}={\frac {1}{8}}{\sqrt {2\left(2{\sqrt {3{\sqrt {17}}-{\sqrt {2(85+19{\sqrt {17}})}}+17}}+{\sqrt {2(17-{\sqrt {17}})}}+{\sqrt {17}}+15\right)}}.} Remove adsЗноскі [1]Гл. вынік 3.12 у кнізе Ivan Niven. Irrational Numbers.. — Wiley, 1956. — С. 41. Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads