শীর্ষ প্রশ্ন
সময়রেখা
চ্যাট
প্রসঙ্গ
সুষম বহুভুজ
উইকিপিডিয়া থেকে, বিনামূল্যে একটি বিশ্বকোষ
Remove ads
সুষম বহুভুজ (ইংরেজি ভাষায়: Regular polygon) এমন বহুভুজ বোঝায় যার প্রতিটি কোণ একে অপরের সমান এবং প্রতিটি বাহু একে অপরের সমান। সুষম বহুভুজ উত্তল বা তারকাকৃতির হতে পারে। সুষম উত্তল বহুভুজের বাহু সংখ্যা বৃদ্ধি করতে থাকলে তা একপর্যায়ে বৃত্তের মত দেখতে হবে।
সুষম উত্তল বহুভুজ
সারাংশ
প্রসঙ্গ
সুষম সরল বহুভুজগুলো সাধারণত উত্তল হয়। সরল বহুভুজ বলতে এমন বহুভুজ বোঝায় যার একটি বাহু কখনো অপর একটি বাহুকে ছেদ করে না। n-বাহু বিশিষ্ট একটি সুষম উত্তল বহুভুজকে তার শ্লেফলি প্রতীক (Schläfli symbol) দিয়ে প্রকাশ করা হয়। বহুভুজটির বাহুর সংখ্যাকে দ্বিতীয় বন্ধনী দিয়ে আবদ্ধ করে দিলেই শ্লেফলি প্রতীক পাওয়া যায়। যেমন ৩-বাহু বিশিষ্ট সুষম উত্তল বহুভুজের শ্লেফলি প্রতীক {৩}।
কোণ
n সংখ্যক বাহুবিশিষ্ট বহুভুজ এর অন্তঃস্থ কোণ এর মান: ডিগ্রি;
- রেডিয়ান; অথবা
- পূর্ণ ঘূর্ণন
এবং প্রতিটি বহিঃস্থ কোনের মান ডিগ্রি এবং বহিঃস্থ কোনগুলোর যোগফল 360° অথবা 2π রেডিয়ান কিংবা একটি পূর্ন ঘূর্ণন।
n এর মান অসীমে গেলে, অন্তঃস্থ কোনগুলোর মান 180° তে যাবে। অর্থাৎ বহুভুজটি একটি বৃত্তের মত দেখতে হবে। যেমন 10000 বাহুবিশিষ্ট একটি বহুভুজ এর অন্তঃস্থ কোনগুলোর মান 179.964°। কিন্তু n এর মান কখনো 180° হবে না। তাই বৃত্তকে অসীম সংখ্যক বাহুবিশিষ্ট বহুভুজ বলা যায় না।
Remove ads
সুষম তারকা বহুভুজ

অ-উত্তল সুষম বহুভুজ সাধারণত সুষম তারকা বহুভুজ হয়ে থাকে, অর্থাৎ তাদের আকৃতি ঝিকিমিকি করা তারার মত। সবচেয়ে প্রচলিত উদাহরণ হতে পারে পঞ্চতূণ বা পেন্টাগ্রাম। এদের শ্লেফলি প্রতীকে বাহু সংখ্যার পাশাপাশি তারকা-সাদৃশ্য লিখতে হয়, অর্থাৎ একটি সংখ্যা দিয়ে বহুভুজটি দেখতে কতোটা তারার মত তা প্রকাশ করা হয়। যেমন পঞ্চতূণের শ্লেফলি সংকেত {৫/২}, এর বাহু সংখ্যা ৫ এবং তারকা-সাদৃশ্য বা স্টারিনেস ২।
Remove ads
গঠনযোগ্য বহুভুজ
কিছু কিছু সুষম বহুভুজ সহজেই পেন্সিল ও কম্পাসের মাধ্যমে আঁকা যায়। আবার কিছু বহুভুজ শুধুমাত্র পেন্সিল ও কম্পাসের মাধ্যমে মোটেও আঁকা যায় না। প্রাচীন গ্রিসের গণিতবিদগণ ত্রিভুজ, চতুর্ভুজ অথবা পঞ্চভূজ আঁকতে জানতেন। এবং একটি সুষম বহুভুজ দেওয়া থাকলে তার দ্বিগুণ সংখ্যক বাহুবিশিষ্ট সুষম বহুভুজও আঁকতে জানতেন। এর ফলে একটি প্রশ্নের আবির্ভাব ঘটে: n সংখ্যক বহু বিশিষ্ট সকল বহুভুজই কি পেন্সিল ও কম্পাসের মাধ্যমে আঁকা সম্ভব? যদি সম্ভব না হয়, তাহলে কোন বহুভুজগুলো আঁকা সম্ভব এবং কোনগুলো সম্ভব নয়?
কার্ল ফ্রেডরিক গাউস ১৭৯৬ সালে পেন্সিল ও কম্পাসের সাহায্যে যে ১৭ বাহুবিশিষ্ট সুষম বহুভুজ আঁকা যায় তা প্রমাণ করেন।
তথ্যসূত্র
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads