শীর্ষ প্রশ্ন
সময়রেখা
চ্যাট
প্রসঙ্গ

সম্ভাবনা

গণিতের শাখা উইকিপিডিয়া থেকে, বিনামূল্যে একটি বিশ্বকোষ

সম্ভাবনা
Remove ads

সম্ভাবনা বা সম্ভাবনা তত্ত্ব হচ্ছে গণিতের একটি শাখা যেখানে গণনামূলকভাবে কোনো ঘটনা বা দৈব পরীক্ষা-এর একটি নির্দিষ্ট ফলাফলে উপনীত হবার সম্ভাবনা বের করা হয়। বিন্যাসসমাবেশ-এর গবেষণা সম্ভাবনা নির্ণয়ে কাজে আসে। সম্ভাবনা পরিসংখ্যানের অন্যতম ভিত্তি।

Thumb
দুটি ছক্কা ব্যবহার করে বিভিন্ন সংখ্যা ওঠার সম্ভাবনা

কোনো ঘটনা ঘটার সম্ভাবনা পরিমাপ করাই সম্ভাব্যতা। সম্ভাব্যতার সাথে ঘটনার যোগসূত্র প্রচুর। 'ঘটনা' হলো আমাদের চারপাশে দৃশ্যমান এমন কোনো পরিস্থিতি যার ফলাফল বিদ্যমান। আর 'সম্ভাব্যতা' হলো এমন একটি গাণিতিক হিসাব যা আমাদের ঘটনা সম্পর্কে সিদ্ধান্ত নিতে সহায়তা করে। সম্ভাব্যতা সম্পর্কে বিস্তারিত জানার জন্য কয়েকটি বিষয় সম্পর্কে স্বচ্ছ ধারণা থাকতে হয়, যেমন: সেট, বিন্যাস, সমাবেশ

Remove ads

প্রকাশ

একটি ঘটনা A-এর সম্ভাবনার সংজ্ঞা এভাবে দেয়া যেতে পারে, ধরা যাক A-এর সম্ভাবনাকে ০ থেকে ১ এর মধ্যে একটি প্রকৃত রাশি দ্বারা প্রকাশ করা যায়, যাকে আমরা লিখি P(A), p(A) বা Pr(A)। কোনো ঘটনার সম্ভাবনা ০ হলে তাকে বলি অসম্ভব ঘটনা, এবং কোনো ঘটনার সম্ভাবনা ১ হলে তাকে বলি অবশ্যম্ভাবী ঘটনা। তবে মনে রাখা উচিত, শাব্দিক অর্থের সাথে পারিসাংখ্যিক সংজ্ঞার অর্থের পার্থক্য আছে - অসম্ভব ঘটনা ঘটা যেমন অসম্ভব না, তেমনি অবশ্যম্ভাবী ঘটনা নিঃসন্দেহে ঘটবেই - এমনটি নাও হতে পারে। এই সংজ্ঞা শুধু বলছে ঘটনাগুলির সম্ভাবনার কথা। এই ধারণাটি 'প্রায় দৃঢ়ভাবে' বলা বক্তব্যের কাছাকাছি।

Remove ads

উদাহরণ

দুটি নিটাল মুদ্রা বার বার নিক্ষেপ করা হলে মুদ্রার মাথা (Head) বা উল্টা পিঠ (Tail) আসতে পারে। এই দৈব পরীক্ষা-এর নমুনাক্ষেত্র হবে S = {HH ,HT,TH ,TT}। ধরা যাক, একটি ঘটনা A = কমপক্ষে একটি মাথা (Head) ফলাফল হিসেবে আসা। সেক্ষেত্রে A-এর স্বপক্ষে নমুনাবিন্দুগুলি হবে A = {HH ,HT,TH}। অতএব, A-এর সম্ভাবনা গণনার পদ্ধতি এরকম হবে: P(A) = {ঘটনা A -তে বিন্দুর সংখ্যা}/ {এই দৈব পরীক্ষার নমুনাক্ষেত্র S-এ বিন্দুর সংখ্যা} = ৩/৪ = ০.৭৫।

Remove ads

ইতিহাস

Thumb
জিরোলামো কারদানো

১৭শ শতকের গণিতবিদ পিয়ের দ্য ফের্মাব্লেইজ প্যাসকেলকে সম্ভাবনা তত্ত্বের ভিত্তি স্থাপনকারী গণিতবিদ হিসেবে গণ্য করা হয়, তবে এর পূর্বে জিরোলামো কারদানো এর উপর গুরুত্বপূর্ণ অবদান রাখেন।

গুরুত্ব

ফ্রান্সের কোত দে'জ়্যুর বিশ্ববিদ্যালয়ের গণিতবিদ ফ্রাঁসোয়া ল্যাবুরি মন্তব্য করেন:

বিশ শতকের মাঝামাঝি গণিতবিদেরা সম্ভাবনা তত্ত্ব নিয়ে তেমন মাথা ঘামায় নি, যে তত্ত্ব হলো গণিতের মূল ভিত্তি–সংখ্যাতত্ত্ব, বীজগণিত এবং ব্যবকলনীয় জ্যামিতি যাকে অবলম্বন করে আছে।

[]

আরও দেখুন

তথ্যসূত্র

বহিঃসংযোগ

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads