÷Genomski imprinting ili genomsko utiskavanje je epigenetički fenomen koji uzrokuje da gen bude eksprimiran na način specifičan za roditeljsko porijeklo (od kojeg je roditelja naslijeđen).[1][2][3][4][5] Geni se također mogu i djelimično utiskati. Djelimični imprinting nastaje kada su aleli oba roditelja različito eksprimirani, a ne kao obosdtrano potpuna ekspresija i potpuna supresija alela od samo jednog roditelja.[6] Oblici genomskog utiskavanja demonstrirani su kod gljiva, biljaka i životinja.[7][8] U 2014. bilo je poznato oko 150 štapanih gena kod miševa i otprilike polovina od toga kod ljudi.[9] Do 2019. godine prijavljeno je 260 utisksanih gena kod miševa i 228 kod ljudi.[10]

Genomsko utiskavanje je proces nasljeđivanja nezavisan od klasičnog Mendelovskog nasljeđivanja. To je epigenetički proces koji uključuje DNK metilaciju i metilaciju histona, bez mijenjanja genske sekvence. Over epigenetičke determinante uspostavljaju se („imprintiraju“, utiskavaju, uštampavaju) u zametnoj liniji (spermatozoidi ili jajne ćelije) roditelja i održavaju se kroz mitotskuku ćelijsku diobu u somatskim ćelijama.[11]

Odgovarajuće utiskavanje određenih gena je važno za normalan razvoj. Ljudske bolesti koje uključuju genomski imprinting uključuju Angelmanov sindrom, Prader-Willijev sindrom i mušku neplodnost.[3]

Pregled

U diploidnim organizmima (poput ljudi), somatske ćelije posjeduju dvije kopije genoma, jednu naslijeđenu od oca, a drugu od majke. Svaki autosomni gen je stoga predstavljen sa dvije kopije ili alela, sa po jednom kopijom naslijeđenom od svakog roditelja u oplodnji. Eksprimirani alel zavisi od njegovog roditeljskog porekla. Naprimjer, gen koji kodira inzulinoliki faktor rasta 2 (IGF2 / Igf2) eksprimiran je samo iz alela naslijeđenog od oca. Iako imprintinzi čine mali udio gena sisara, imaju važnu ulogu u embriogenezi, posebno u formiranju visceralnih struktura i nervnog sistema.[12]

Termin "imprinting" je prvi put korišten za opisivanje pojava kod insekta Pseudococcus nipae.[13] U porodici Pseudococcidae (tvrdokrilci ) (Hemiptera, Coccoidea) i mužjak i ženka razvijaju se iz oplođenog jajeta. Kod ženki, svi hromosomi ostaju eukromatinski i funkcionalni. U embrionima koji su predodređeni da postanu mužjaci, jedan haploidni set hromosoma postaje heterohromatski, nakon šeste podjele cijepanja i ostaje takav u većini tkiva; mužjaci su stoga funkcionalno haploidni.[14][15][16]

Utiskani geni kod sisara

Da bi utiskavanje moglo biti odlika razvoja sisara sugerirano je u eksperimentima uzgoja na miševima koji nose recipročne hromosomske translokacije.[17] Eksperimenti transplantacije jedra kod mišjih zigota početkom 1980-ih potvrdili su da normalan razvoj zahtijeva doprinos i majčinog i očevog genoma. Velika većina mišjih embriona nastalih iz partenogeneze (zvani partenogenoni, sa dva genoma majke ili jajne ćelije) i androgeneze (zvani androgenoni, sa dva genoma oca ili sperme) ugibaju na ili prije faze blastociste/implantacije . U rijetkim slučajevima, kada se razviju do postimplantacijskih faza, ginogenetski embrioni pokazuju bolji embrionalni razvoj u odnosu na razvoj placente, dok je za androgenone obrnuto. Ipak, za potonje, samo nekoliko je opisano (u radu iz 1984.).[18][19][20]

Ne postoje prirodni slučajevi partenogeneze kod sisara zbog utiskanih gena. Međutim, 2004. godine, eksperimentalna manipulacija japanskih istraživača otiskom metilacije oca koji kontroliše gen Igf2 dovela je do rođenja miša (nazvanog Kaguya) sa dva majčina seta hromosoma, iako to nije pravi partenogenon jer su korištene ćelije dvije različite ženke miševa. Istraživači su uspjeli koristeći jednu jajnu stanicu od nezrelog roditelja, čime su smanjili majčino utiskavanje i modificirali ga kako bi eksprimirao gen Igf2, koji se obično eksprimira samo u očevoj kopiji gena.

Partenogenetski/ginogenetski embrioni imaju dvostruko veći nivo od normalnog nivoa ekspresije od gena dobijenih od majke, i nedostaje im ekspresija gena eksprimiranih od strane oca, dok je obrnuto za androgene embrije. Sada je poznato da postoji najmanje 80 utiskanih gena kod ljudi i miševa, od kojih su mnogi uključeni u rast i razvoj embriona i placente.[11][21][22][23] Hibridno potomci dvije vrste može pokazati neobičan rast zbog nove kombinacije utiskanih gena.[24]

Za identifikaciju utiskanih genao krišteni su različiti metodi. Kod svinja, Bischoff et al. upoređivali su transkripcijske profile koristeći mikromrežu DNK, da bi ispitali različito eksprimirane gene između partenota (2 genoma majke) i kontrolnih fetusa (1 genom majke, 1 genom oca).[25] Intrigantna studija koja je istraživala transkriptom mišjeg moždanog tkiva otkrila je preko 1300 utiskanih genskih lokusa (otprilike 10 puta više nego što je ranije prijavljeno), sekvenciranjem RNK hibrida F1 generacije, koji su rezultat recipročnih ukrštanja.[26] Rezultat su, međutim, osporili drugi koji su tvrdili da je ovo precijenjeno po redu veličine, zbog pogrešne statističke analize.[27][28]

Kod domaće stoke pokazalo se da su jednonukleotidni polimorfizmi u utiskanim genima koji utiču na fetusni rast i razvoj povezani s ekonomski važnim proizvodnim osobinama goveda, ovaca i svinja.[29][30]

Genetičko mapiranje utiskanih gena

U isto vrijeme sa generiranjem ginegenetskih i androgenetskih embriona o kojima je gore raspravljano, generirani su i mišji embrioni koji su sadržavali samo male regije, izvedene bilo iz očevog ili majčinog izvora.[31][32] > Generiranje serije takvih jednoroditeljskih disomija, koje zajedno obuhvataju cio genom, omogućilo je stvaranje mape za utiskavanje.[33] One regije koje kada su naslijeđene od jednog roditelja rezultiraju uočljivim fenotipom sadrže utiskane gene). Dalja istraživanja pokazala su da su u ovim regijama često postojali brojni utiskani geni.[34] Oko 80% utiskanih gena nalazi se u klasterima poput ovih, koji se nazivaju utiskanim domenima, što sugerira nivo koordinirane kontrole.[35] U skorije vrijeme, skrininzi na cijelom genomu za identifikaciju utiskanih gena koristili su diferencijalnu ekspresiju iRNK iz kontrolnih fetusa i partenogenetskih ili androgenetskih fetusa hibridiziranih u profiliranje genske ekspresije mikromrežama,[36] alelsnopecifične ekspresije gena, pomoću SNP genotipizacije mikročipova,[37] sekvenciranja transkriptoma[38] i kanala predviđanja in silico .[39]

Mehanizmi utiskavanja

Uštampavanje je dinamičan proces. Mora postojati mogućnost brisanja i ponovnog uspostavljanja otisaka kroz svaku generaciju, tako da geni koji su utiskani u odraslu osobu i dalje mogu biti ni u potomstvu te odrasle osobe. (Naprimjer, majčinski geni koji kontroliraju proizvodnju insulina bit će utiskani u mužjaka, ali će biti izraženi u bilo kojem od muških potomaka koji naslijede ove gene.) Priroda utiskavanja mora stoga biti epigenetička prije nego DNK-zavisna sekvenca. U germlinijskim ćelijama imprint se briše, a zatim ponovo uspostavlja u skladu sa spolom jedinke, tj. u spermiju u razvoju (tokom spermatogeneze), uspostavlja se očinski imprint, dok u razvoj oocita (oogeneza), uspostavlja se majčin imprint. Ovaj proces brisanja i reprogramiranja[40] je neophodan, tako da status utiskavanja zametnih ćelija bude relevantan za spol jedinke. I kod biljaka i kod sisara postoje dva glavna mehanizma koja su uključena u uspostavljanje imprinta; to su DNK-metilacija i histonske modifikacije.

Nedavno, nova studija[41] predložila je novi nasljedni mehanizam utiskavanja kod ljudi koji bi bio specifičan za tkivo posteljice i koji je nezavisan od metilacija DNK (glavni i klasični mehanizam za genomsko utiskavanje). Ovo je uočeno kod ljudi, ali ne i kod miševa, što ukazuje na razvoj nakon evolucijske divergencije ljudi i miševa, prije ~80 miliona godina. Među hipotetskim objašnjenjima za ovaj novi fenomen, predložena su dva moguća mehanizma: ili histonska modifikacija koja ostavlja imprint na novim placentalnospecifičnim utiskanim lokusima ili, alternativno, regrutovanje DNMT za ove lokuse pomoću specifičnog i nepoznatog transkripcijskog faktora koji bi bio eksprimiran tokom rane diferencijacije trofoblasta.

Regulacija

Grupisanje utiskanih gena unutar klastera omogućava im da dijele zajedničke regulatorne elemente, kao što su nekodirajuća RNK i diferencijalno metilirane regije (DMR). Kada ovi regulatorni elementi kontrolišu utiskavanje jednog ili više gena, poznati su kao regije kontrole utiskavanja (ICR). Ekspresija nekodirajuće RNK, kao što je antisensna Igf2r RNK na mišjem hromosomu 17 i KCNQ1OT1 na ljudskom hromosomu 11 sekvenca p15.5, pokazalo se da su neophodni za utiskavanje gena u njihovim odgovarajućim regijama.[42]

Diferencijalno metilirani regioni su općenito segmenti DNK bogati citozinskim i guaninskim nukleotidima, pri čemu su nukleotidi citozina metilirani na jednoj kopiji, ali ne i na drugoj. Suprotno očekivanju, metilacija ne znači nužno utišavanje; umesto toga, efekat metilacije zavisi od podrazumijevanog stanja regije.[43]

Također pogledajte

Reference

Vanjski linkovi

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.