Mikro RNK
From Wikipedia, the free encyclopedia
Remove ads
mikroRNK ili mikro RNK (skraćeno miRNK, eng. microRNA, miRNA) je mala nekodirajuća molekula RNK, od oko 22 nukleotida, koja je nađena kod biljaka, životinja i nekih virusa. Njena je RNK prigušena u posttranskripcijskom reguliranju ekspresije gena.[1][2][3][4][5][6]

Kod eukariota je kodirana iz jedarne DNK, kao kod svih organizama čiji je genom zasnovan na DNK. Uloga miRNK se ostvaruje preko baznog uparivanja s komplementarnim sekvencama unutar molekule iRNK.[7] Kao rezultat toga, ove su molekule iRNK su prigušene jednim ili više od sljedećih procesa:
- 1. rasijecanje lanca iRNK u dva komada;
- 2. destabiliziranje iRNK skraćivanjem njenog poly(A) repa i
- 3. manje djelotvorna translacija iRNK u proteine u ribosomima.[7][8]

Genom čovjeka može kodirati preko 1.000 miRNK,[9][10] koje su učestale u mnogim tipovima sisarskih ćelija,[11][12] a javljaju se za kopiranje oko 60% gena čovjeka i ostalih sisara.[13][14]
Ove miRNK su dobro konzervirane sekvence i kod biljaka i kod životinja, a snatra se da su vitalnog značaja i evolucijski drevne komponente regulacije gena.[15][16][17][18][19] Iako su osnovne komponente mikroRNK puta među biljkama i životinjama konzervirane, čini se da se miRNK repertoar u dva carstva samostalno pojavio sa različitim primarnim vidom djelovanja.[20][21]
Biljne miRNK obično imaju približno perfektno uparivanje sa odgovarajućim iRNK ciljnim molekulama, koje izazivaju represiju gena tokom prerade ciljnih transkripata.[22] Nasuprot tome, životinjske miRNK su sposobne za prepoznavanje njihovih ciljnih iRNK pomoću 6–8 nukleotida na 5' kraju miRNK,[13][23][24] koje nisu dovoljno uparene da induciraju cijepanje ciljnih iRNK.[7] Kod životinja je obilježavajuća kombinirana regulacija miRNK.[7][25]
Data miRNK može imati na stotine različitih ciljnih iRNK, a dati cilj može biti reguliran multiplim miRNK-a.[14][26]
Remove ads
Historija
Prva miRNK je otkrivena ranih 1990-ih.[27][28] Međutim, miRNK nije bila prepoznata kao posebna klasa bioloških regulatora sve do ranih 2000-tih.[29][30][31][32][33] Tako je istraživanje pokazalo da se u različitim tkivima jispoljavaju n različiti setovi miRNK,[12][34] kao i njihove multiple uloge u razvoju biljaka i životinja, u mnogim ostalim biološkim procesim.[22][35][36][37][38][39][40] Aberantna ekspresija miRNK uvjetuje razna bolesna stanja. U toku je istraživanje terapija na bazi miRNK.[41][42][43][44]
Procjena prosječnog broja informacijskih RNK koje su ciljevi represije putem tipskih miRNK varira, ovisno o metodu,[45] ali mnogi pristupi pokazuju da sisarske miRNK mogu imati mnoge pojedinačne ciljeve. Naprimjer, jedna analiza visoko konzerviranih miRNK kod kičmenjaka pokazuje da svaka ima prosječno oko 400 konzerviranih ciljeva.[14] Slično tome, eksperimenti su pokazali da jedna miRNK može reducirati stabilnost stotina pojedinačnih molekula informacijske RNK.[46] Other experiments show that a single miRNA may repress the production of hundreds of proteins, but that this repression often is relatively mild (less than 2-fold).[47][48]
Prva ljudska bolest sa poremećajem regulacije miRNA bila je hronična limfocitna leukemija. Sljedili su ostale malgnosti B-ćelija.[49]
Sekundarna struktura djetelinaste petlje obavljena je sljedeće X-zračeće kristalografije u dvije nezavisne istraživačke grupe, 197. Pored toga otkrivena je ribosomska RNK, a zatim i URNK u ranim 1980-im. Od tada, nastavlja se otkrivanje novih nekodirajućih RNK: snoRNK, Xist, CRISPR i još mnogih. Nedavni značajni podaci uključuju riboswitche i miRNK, te otkriće RNK mehanizma njihovog djelovanja. Zajedno sa saradnicima, Craig C. Mello i Andrew Fire su 2006. dobuili Nobelovu nagradu za fiziologijui ili medicinu.[50][51]
Remove ads
Također pogledajte
Reference
Vanjski linkovi
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads