For faster navigation, this Iframe is preloading the Wikiwand page for Espai de Hilbert.

Espai de Hilbert

Aquest article o secció no cita les fonts o necessita més referències per a la seva verificabilitat.

En matemàtiques, el concepte d'espai de Hilbert és una generalització del concepte d'espai euclidià. Aquesta generalització permet que nocions i tècniques algebraiques i geomètriques aplicables a espais de dimensió dos i tres s'estenguin a espais de dimensió arbitrària, incloent espais de dimensió infinita. Exemples de tals nocions i tècniques són la d'angle entre vectors, ortogonalitat de vectors, el teorema de Pitàgores, projecció ortogonal, distància entre vectors i convergència d'una successió. El nom donat a aquests espais és en honor del matemàtic David Hilbert qui els va utilitzar en el seu estudi de les equacions integrals.

Més formalment, es defineix com un espai de producte interior que és complet respecte a la norma vectorial definida pel producte interior. Els espais de Hilbert serveixen per aclarir i generalitzar el concepte de sèries de Fourier, certes transformacions lineals tals com la transformació de Fourier hi són d'importància crucial en la formulació matemàtica de la mecànica quàntica.

Els espais de Hilbert i les seves propietats s'estudien dins de l'anàlisi funcional.

Descripció formal

Un espai de Hilbert és un espai vectorial complet proveït d'un producte escalar. Per definició, doncs, també és un espai de Banach. A causa de la presència d'un producte interior, un espai de Hilbert té propietats geomètriques útils addicionals que no es troben en un espai de Banach; aquestes propietats es poden aprofitar per simplificar l'anàlisi o obtenir resultats més forts. Per exemple, en un espai de Hilbert existeixen operadors de projecció sobre subespais tancats de l'espai, fet que fa que aquests siguin molt importants en certes branques de les matemàtiques, com ara les teories d'optimització i aproximació.

Tot espai de Hilbert és isomòrfic al seu espai dual. A més, un espai de Hilbert és real quan aquest equival al seu propi espai dual. Segons el teorema de representació de Riesz, tota funció lineal contínua complexa sobre un espai de Hilbert real pot ser expressada com el producte interior d'elements d'aquell espai amb algun element fix de l'espai.

Utilitats en física quàntica

Els espais de Hilbert tenen un paper fonamental en la teoria física de la mecànica quàntica. Es postula que l'estat en la representació d'Schrödinger d'un sistema mecànic quàntic correspon a un vector unitari d'un espai de Hilbert, i les quantitats físiques "observables" es postulen com a operadors autoadjunts en aquest espai. Els estats serveixen per assignar propietats estadístiques als observables del sistema.[1]

Referències

  1. «Why is the Hilbert's space useful in quantum mechanics?». Research Gate. [Consulta: 21 setembre 2021].

Bibliografia

  • Carl B. Boyer. History of Mathematics. 2a ed.. Nova York: John Wiley & Sons, 1989. ISBN 0-471-54397-7. 
  • Jean Dieudonné. Foundations of Modern Analysis. Academic Press, 1960. 
  • Avner Friedman. Foundations of Modern Analysis. Nova York: Courier Dover Publications, 1982. ISBN 0-486-64062-0. 

Vegeu també

{{bottomLinkPreText}} {{bottomLinkText}}
Espai de Hilbert
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.