For faster navigation, this Iframe is preloading the Wikiwand page for Estereoradian.

Estereoradian

Infotaula d
estereoradian o estereoradiant
Steradian.svg

Representació gràfica d'1 esteroradian. L'esfera té radi r, i en aquest cas l'àrea A del tros de superfície destacat és r2. L'angle sòlid Ω equival a A sr/r2, que és 1 sr en aquest exemple. L'esfera sencera té un angle sòlid de sr.
Tipusunitat derivada del SI, unitat auxiliar, unitat derivada del SI amb nom especial, unitat coherent del SI, unitat derivada en UCUM, unitat de mesura i solid angle unit (en) Tradueix Modifica el valor a Wikidata
Sistema d'unitatsUnitat derivada del SI
Unitat deAngle sòlid
Símbolsr
Conversions d'unitats
A unitats del SI1 sr Modifica el valor a Wikidata

L'estereoradian (també escrit estereoradiant)[1] (símbol: sr) és la unitat de l'angle sòlid del SI. S'utilitza per a descriure mesures angulars en un espai tridimensional, de manera anàloga a com el radian descriu angles en el pla euclidià. La mesura d'un angle sòlid en estereoradians correspon a l'àrea de la superfície que abraça sobre l'esfera de radi unitat.[2]

L'estereoradiant és la unitat derivada del SI que mesura angles sòlids, i n'és l'única adimensional, juntament amb el radian. És l'equivalent tridimensional del radian. El nom estereoradian està format per la paraula grega στέρεος (sòlid) més radian. El seu símbol és sr.[3]

Definició

L'estereoradiant es defineix fent referència a una esfera de radi . Si l'àrea d'una porció d'aquesta esfera és , un estereoradiant és l'angle sòlid comprès entre aquesta porció i el centre de l'esfera.[2][4]

Explicació de la definició

L'angle sòlid en estereoradiants, és:

On és la superfície coberta per l'objecte en una esfera imaginària de radi , el centre del qual coincideix amb el vèrtex de l'angle.

Per tant, un estereoradiant és l'angle que cobreix una superfície a una distància del vèrtex.

Analogia amb el radiant

En dues dimensions, l'angle en radiants, està relacionat amb la longitud d'arc, i és:

sent la longitud d'arc, i el radi del cercle.

Angle d'un casquet esfèric

El con (1) i el casquet esfèric (2) dins de l'esfera.
El con (1) i el casquet esfèric (2) dins de l'esfera.


Si l'àrea és igual a i està donada per l'àrea d'un casquet esfèric

()

llavors es compleix que

.

Llavors l'angle sòlid descrit pel con, que correspon a l'angle pla (vegeu la figura) és igual a:

.

Vegeu també

Referències

  1. estereoradiant a Optimot
  2. 2,0 2,1 "Steradian", McGraw-Hill Dictionary of Scientific and Technical Terms, fifth edition, Sybil P. Parker, editor in chief. McGraw-Hill, 1997. ISBN 0-07-052433-5
  3. Stutzman; Thiele, Gary A Antenna Theory and Design, 2012-05-22. ISBN 978-0-470-57664-9. [Enllaç no actiu]
  4. Woolard Spherical Astronomy, 2012-12-02. ISBN 978-0-323-14912-9. [Enllaç no actiu]

Enllaços externs

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Estereoradian
{{bottomLinkPreText}} {{bottomLinkText}}
Estereoradian
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.