Vector (física) - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for Vector (física).

Vector (física)

De Viquipèdia

S'ha proposat fusionar aquest article a «Vector (matemàtiques)». (Vegeu la discussió, pendent de concretar). Data: abril de 2019

En física un vector és un concepte matemàtic i un segment orientat que s'utilitza per descriure magnituds tals com velocitats, acceleracions o forces, en les quals és important considerar no només el valor sinó també la direcció i el sentit. Es representa per un segment orientat per denotar el seu sentit, la seva magnitud (la longitud de la fletxa) i el punt d'aplicació.

Propietats

Els vectors es poden representar amb lletres, amb una fletxa damunt, així: .

Un vector té les següents propietats:

-Punt d'aplicació, és l'origen del segment.

-Mòdul, expressa el valor numèric de la magnitud vectorial. Es representa per la longitud del segment, sempre en valor absolut. Per exemple, si es vol expressar que el mòdul de val 5 unitats, es fa així: .

-Direcció, que és la del segment. A la recta que conté el vector se l'anomena línia d'acció.

-Sentit, distingeix dos sentits sobre la línia d'acció.

Es diu que dos vectors són concurrents quan tenen el mateix punt d'aplicació.

Un vector oposat a un altre és el que té el mateix punt d'aplicació, mòdul i direcció però sentit contrari. Així el vector oposat a és .

Expressat amb les fórmules, donat un vector de coordenades (x,y,z) ) el seu mòdul és . La seva direcció està donada per la recta que conté el vector i el sentit pot ser cap a un costat o cap a l'altre.

També es pot separar un vector en mòdul i donar la direcció i sentit amb un vector unitari que es calcula com: , essent i,j,k els vectors (1,0,0), (0,1,0)i (0,0,1) respectivament.

Suma i resta de vectors

Mètode gràfic

Per la suma i resta de vectors s'ha de tenir en compte, a més a més de la magnitud escalar o mòdul, el sentit i la direcció dels vectors.

Mètode analític

Mòdul resultant

Donats dos vectors i , de mòduls coneguts i que formen l'angle entre si, es pot obtenir el mòdul amb la següent fórmula:

Obtenció de la Direcció

Per obtenir els angles directors hem de conèixer l'angle i tenir calculat .

Podem emprar aquesta fórmula:

Amb la fórmula obtindrem els sinus, després per trobar l'angle a partir del sinus hem de tenir en compte que:

Angle entre dos vectors

Per calcular l'angle entre dos vectors s'empra la següent fórmula:

El qual es pot generalitzar a qualsevol dimensió:

Quan es tracta algebraicament en un espai vectorial l'angle entre dos vectors està donat per:

Essent <,> el producte escalar definit dins el mateix espai vectorial.

Vegeu també

Enllaços externs

{{bottomLinkPreText}} {{bottomLinkText}}
Vector (física)
Listen to this article