Eulerova funkce

From Wikipedia, the free encyclopedia

Eulerova funkce
Remove ads

Eulerova funkce je významná funkce v teorii čísel.

Thumb
Graf Eulerovy funkce pro hodnoty od 1 do 1000

Značí se .

Definice

je počet všech přirozených čísel k takových, že a NSD(k,n)=1, tedy k a n jsou nesoudělná čísla. Ihned z definice jsou patrné následující vlastnosti:

  • ,
  • pro p prvočíslo,
  • pro p prvočíslo a m kladný celý exponent.
Remove ads

Výpočet Eulerovy funkce

K výpočtu hodnoty Eulerovy funkce pro obecný argument n se používá následující vlastnost (multiplikativnost): Nechť x,y jsou dvě nesoudělná celá kladná čísla, potom

.

Toto tvrzení se dokazuje pomocí čínské věty o zbytcích.

Je patrné, že je-li znám rozklad argumentu n na prvočísla:

je hodnota Eulerovy funkce rovna

Naproti tomu není známo, zda lze Eulerovu funkci efektivně spočítat bez znalosti rozkladu argumentu na prvočísla; efektivní algoritmus znamená v tomto případě algoritmus polynomiální.

Objev prakticky využitelného algoritmu pro výpočet Eulerovy funkce bez znalosti rozkladu argumentu by měl ničivé důsledky pro bezpečnost šifry RSA, neboť s jeho pomocí by každý byl schopen dopočítat z veřejného klíče klíč soukromý.

Remove ads

Související články

Externí odkazy

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads