Lineární interpolace

From Wikipedia, the free encyclopedia

Remove ads

Lineární interpolace je v geometrii jednoduchá metoda interpolace dat za použití lineárních mnohočlenů. Tato metoda se často využívá v matematice (konkrétně v numerické analýze) a v početních aplikacích včetně počítačové grafiky.

Lineární interpolace mezi dvěma známými body

Thumb
Jsou dány dva krajní červené body, lineárně interpolovaná hodnota y v bodě x leží na modré úsečce.

Jsou-li dány dva body se souřadnicemi a , pak lineární interpolace přisuzuje bodu hodnotu ležící na spojnici těchto bodů. Tato hodnota je dána rovnicí

která může být odvozena geometricky z obrázku. Vyjádřením dostaneme:

což je vzorec pro lineární interpolaci v intervalu , mimo tento interval jde o lineární extrapolaci.

Remove ads

Interpolace více bodů

Thumb
Křivka lineární interpolace datových bodů (červeně) se skládá z jejich spojnic (modré čáry).

Lineární interpolace více datových bodů odpovídá spojnicím mezi každou sousedící dvojicí. Výsledkem je spojitá křivka, typicky s nespojitou derivací (není hladká).

Remove ads

Aproximace funkce

Lineární interpolace se často používá k aproximaci hodnoty nějaké funkce za použití dvou známých hodnot v jiných bodech. Odchylka této aproximace je definována jako:

kde označuje lineární interpolaci definovanou výše

Užitím Rolleho věty lze dokázat, že pokud má spojitou derivaci, je odchylka ohraničena:

Maximální velikost odchylky tedy souvisí s maximem druhé derivace na daném intervalu. To je také intuitivně správně, čím více se funkce kroutí, tím hůře se aproximuje jednoduchou lineární interpolací.

Remove ads

Užití

Lineární interpolace je často používána pro zaplnění mezer v tabulce. Předpokládejme, že máme tabulku seřazující populaci nějaké země v roce 1970, 1980, 1990 a 2000 a chceme odhadnout populaci v roce 1984. Hrubý odhad lze získat pomocí lineární interpolace. Základní operace lineární interpolace mezi dvěma hodnotami je tak běžně používána v počítačové grafice, někdy pod názvem „lerp“ (zkratka Linear intERPolation).

Operace lineární interpolace je vestavěna v hardwaru všech moderních počítačových grafických karet. Jsou často použity jako stavební blok pro komplexnější operace, např. bilineární interpolace může být provedena pomocí dvou lineárních interpolací. Protože je tato operace nenáročná, je to dobrá možnost pro interpolaci hodnot hladké funkce ve vyhledávací tabulce bez přílišného počtu položek.

Remove ads

Historie

Lineární interpolace byla používána již od starověku pro zaplnění mezer v tabulkách, často s astronomickými daty. Věří se, že byla používána v posledních třech stoletích př. n. l., například řeckým matematikem a astronomem Hipparchem (2. století př. n. l.). Popis lineární interpolace může být nalezen v Algamestu u Ptolemaia (2. století n. l.).

Nadstavby

V některých situacích není lineární interpolace dostatečná. V tomto případě může být nahrazena polynomiální interpolací, například kubickou interpolací. Lineární interpolace může rovněž být rozšířena na bilineární interpolaci pro interpolaci funkcí o dvou proměnných. Bilineární interpolace se často používá jako surový filtr pro potlačení zubatých čar (viz aliasing). Podobně trilineární interpolace se používá k interpolaci funkcí o třech proměnných.

Remove ads

Reference

V tomto článku byl použit překlad textu z článku Linear interpolation na anglické Wikipedii.

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads