Komutativní těleso

komutativní okruh, ve kterém má každý nenulový prvek inverzi From Wikipedia, the free encyclopedia

Remove ads

Komutativní těleso[1] (někdy stručně těleso[2] podle německého körper, někdy též pole z anglického field) je algebraická struktura, na které jsou definovány dvě binární operace, sčítání a násobení, pro které platí řada určených vlastností. Jedná se o taková tělesa, kde násobení splňuje navíc komutativitu, respektive takové komutativní okruhy, kde navíc existuje inverzní prvek pro obě binární operace (okruh vyžadoval existenci inverzního prvku jen pro operaci +).

Tělesa, ve kterých násobení není komutativní, se nazývají nekomutativní tělesa.[1]

Remove ads

Definice komutativního tělesa

Trojici , kde je množina a + (sčítání) a (násobení) jsou binární operace, nazveme komutativním tělesem, je-li okruh a platí-li navíc

  • pro každé existuje tak, že , což značíme (existence inverzního prvku k násobení), a
  • pro každé platí (komutativita násobení).
Remove ads

Tělesa s přídavnou strukturou

Vzhledem k tomu, že tělesa jsou v matematice všudypřítomná, jsou uvažována některá vylepšení konceptu tělesa pro přizpůsobení potřebám konkrétních matematických oblastí.

Topologické těleso

Těleso F se nazývá topologické, když množina F je topologickým prostorem, v kterém všechny operace tělesa (sčítání, násobení, zobrazení a ↦ −a a aa−1) jsou spojitá zobrazení vzhledem k uvažované topologii. [3] Topologie těles obvykle bývá indukována metrikou, tj. funkcí

d : F × FR,

která měří vzdálenosti mezi libovolnými body F. Topologická tělesa jsou speciálním případem topologických okruhů.

Remove ads

Příklady těles

Reference

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads