Indenfor lineær algebra har en matrix A egenskaben invertibel, hvis og kun hvis der eksisterer en matrix B således at:

hvor er enhedsmatricen. I så fald kaldes en invertibel matrix og kaldes den inverse matrix til og skrives .[1] Det følger af definitionen at både og er kvadratiske matricer af samme dimension n×n.

En invertibel matrix kaldes også for en regulær matrix (eller en ikke-singulær matrix).[2][3] En kvadratisk matrix som ikke er invertibel kaldes for en singulær matrix (eller en ikke-regulær matrix).[2][3]

Ækvivalente egenskaber

At en n × n-matrix er invertibel er ækvivalent med at:

  • Determinanten af ikke er nul, det ≠ 0.
  • har rang n.
  • Ligningen har kun den trivielle løsningen . Med andre ord, nulrummet består kun af nulvektoren.
  • Den transponerede er invertibel.
  • Tallet 0 er ikke en egenværdi til .

Se også

Referencer

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.