Punktgruppe
spezieller Typus einer Symmetriegruppe der euklidischen Geometrie / aus Wikipedia, der freien Enzyklopädie
Liebe Wikiwand-AI, fassen wir uns kurz, indem wir einfach diese Schlüsselfragen beantworten:
Können Sie die wichtigsten Fakten und Statistiken dazu auflisten Punktgruppe?
Fass diesen Artikel für einen 10-Jährigen zusammen
ZEIGE ALLE FRAGEN
Eine Punktgruppe ist ein spezieller Typus einer Symmetriegruppe der euklidischen Geometrie, der die Symmetrie eines endlichen Körpers beschreibt. Alle Punktgruppen zeichnen sich dadurch aus, dass es einen Punkt gibt, der durch alle Symmetrieoperationen der Punktgruppe wieder auf sich selbst abgebildet wird. Aufgrund des Neumannschen Prinzips bestimmt die Punktgruppe die makroskopischen Eigenschaften des Körpers. Weitere Aussagen lassen sich mit Hilfe der Darstellungstheorie gewinnen.
Verwendet werden die Punktgruppen:
- in der Kristallographie, wo die 32 kristallographischen Punktgruppen auch Kristallklassen genannt und inzwischen hauptsächlich mit Hilfe der Hermann-Mauguin-Symbolik bezeichnet werden,
- in der Molekülphysik, wo die Punktgruppen mit Hilfe der Schoenflies-Notation bezeichnet werden.