Top-Fragen
Zeitleiste
Chat
Kontext
Acetogenese
Stufe des anaeroben Abbaus biogener Substanzen im Rahmen der Vergärung Aus Wikipedia, der freien Enzyklopädie
Remove ads
Acetogenese[a 1] ist eine spezielle Form des Energiestoffwechsels und zwar der anaeroben Atmung, die auf dem reduktiven Acetyl-CoA-Weg (Wood-Ljungdahl-Weg) basiert[1]. Kohlenstoffdioxid (CO2) fungiert dabei als Elektronenakzeptor und übernimmt somit die Funktion als Oxidationsmittel, die O2 bei der aeroben Atmung hat. Als Endprodukt dieser „CO2-Atmung“[a 2][2] wird (meist[3]) ausschließlich Essigsäure ausgeschieden. In Abgrenzung zu anderen mikrobiellen anaeroben Prozessen, bei denen Essigsäure nicht als Hauptprodukt gebildet wird[a 3], bezeichnet man diesen Prozess auch als Homoacetogenese.[4]

Ein gärender Anaerobier (F), der ATP ausschließlich durch Substratkettenphosphorylierung (SP) gewinnt, scheidet organische Gärprodukte (OP), aus, die von einem acetogenen Bakterium (AB) heterotroph zu H2 und CO2 vergoren werden. Diese Produkte werden durch den Wood-Ljungdahl-Weg (WL) zu Essigsäure kondensiert. Acetogene Bakterien können aber auch H2 und CO2 von außen aufnehmen und verarbeiten
Sie konkurrieren dabei mit obligat autotrophen Archaeen (M1), die Methanogenese betreiben. Acetoclastische, Essigsäure „spaltende“ Methanogene stehen dagegen in Syntrophie zu den Acetogenen. Sie verschieben das Gleichgewicht 4 H2 + 2 CO2 ↔ CH3-COOH nach rechts, indem sie das Endprodukt Essigsäure entfernen und CO2 recyceln.
Als Reduktionsmittel dient beim Acetyl-CoA-Weg elementarer Wasserstoff (H2). Er stammt, ebenso wie CO2, aus einer Reihe von Gärungsprozessen. Diese können in den acetogenen Bakterien selbst stattfinden. Sie können durchweg heterotroph organisches Material zu H2/CO2 vergären und so die Reaktionspartner für den Acetyl-CoA-Weg bilden. Der Gesamtprozess aus Gärung und Acetogenese wird dann als Homoacetatgärung bezeichnet[5]. Die beiden Gase H2 [6][7] und CO2 werden aber auch durch andere gärende Organismen gebildet und ausgeschieden. Sie ermöglichen damit acetogenen Bakterien ein lithoautotrophes Wachstum.
Die exergone Redoxreaktion 4 H2 + 2 CO2 → CH3-COOH liefert nur so wenig Energie (ΔG0’ = -111 kJ/mol[5]), dass man von „Autotrophie am thermodynamischen Limit“[8] sprechen kann. Das zum Wachstum nötige ATP wird auch bei der Acetogenese nach dem Chemiosmotischen Prinzip durch eine ATP-Synthase gebildet.[2][9]
Remove ads
Ökologische Stellung und Vorkommen
Zusammenfassung
Kontext
Als anaerobe Atmung findet Acetogenese ausschließlich in Lebensräumen statt, in denen kein Sauerstoff (O2) zur Oxidation toten organischen Materials zur Verfügung steht. Der anaerobe Abbau geschieht schrittweise durch ganz unterschiedliche Mikroorganismen, die Abbauprodukte ausscheiden, welche dann anderen anaeroben Organismen als Nahrungsquelle dienen. Am Ende dieser Nahrungskette[2] stehen Lebewesen, die selbst dann noch wachsen können, wenn kein organisches Material mehr zur Verfügung steht. Dazu sind sie in der Lage, weil sie anorganisches CO2 zum Aufbau von Zellmaterial assimilieren können. Sie sind autotroph und zudem lithotroph, da sie anorganisches H2 zur Reduktion von CO2 verwenden.
Die CO2-Assimilation ist ein energetisch aufwendiger Prozess. Die Organismen am Ende der anaeroben Nahrungskette sind chemotroph. Das heißt, dass sie Energie nicht durch Licht, sondern aus chemischen Reaktionen gewinnen. Am Ende der anaeroben Atmungskette stehen zur Energiegewinnung nur noch die beiden Reaktionspartner zur Verfügung, die zur CO2-Assimilation dienen: CO2 und H2.
Diese beiden Verbindungen sind die Lebensgrundlage von zwei ganz unterschiedlichen Gruppen von Organismen: Acetogene Bakterien und Methanogene Archaeen.
Zusammenfassend unterscheiden sich acetogene Bakterien von methanogenen Archaeen darin, dass letztere durch ihre obligate „CO2-Atmung“ als Spezialisten auf das unterste Ende der anaeroben Nahrungskette fixiert sind. Die acetogene „CO2-Atmung“ ist dagegen eine zusätzliche Option von Organismen, die vielen taxonomischen Gruppen angehören. Häufig tritt sie nur unter bestimmten Wachstumsbedingungen auf. So kommt es, dass Acetogenese immer wieder bei Bakterien nachgewiesen wird, die vorger als nicht-acetogen gegolten haben.[13]

Acetogene Bakterien finden sich in vielen anaeroben Biotopen.
Remove ads
Biochemie acetogener Bakterien
Zusammenfassung
Kontext

1 Acetyl-Coenzym A, 1a Acetylphosphat, 2 Tetrahydrofolat (THF), 2a Formyl-THF, 2b Methenyl-THF, 2c Methylen-THF, 2d Methyl-THF, AcKi Acetatkinase, CO-Dh CO-Dehydrogenase / Acetyl-CoA-Synthase, EBH Elektronenbifurkierende Hydrogenase, Fdox Ferredoxin, Fdred Ferredoxin 2−, FTCy Formyl-THF-Cyclohydrolase, FTS Formyl-THF-Synthetase, Gly Glycolyse, HDCR H2-abhängige CO2 -Reductase, MTDe Methylene-THF-Dehydrogenase, Mtra Methyltransferase, MTRed Methylene-THF-Reductase, PFdO Pyruvat:Fd-Oxidoreductase, Ptra Phosphotransacetylase, RNF Ferredoxin:NAD-Oxidoreductase (Rnf-Komplex)
Viele anaerobe Organismen fixieren CO2 mittels des Acetyl-CoA-Wegs, bei dem Coenzym A in „aktivierte Essigsäure“ (Acetyl-CoA) umgewandelt wird. Bei der Acetogenese wird das endergon produzierte Acetyl-CoA indes nicht nur zum Aufbau von Zellsubstanz, sondern vielmehr unter teilweiser Energierückgewinnung katabolisch umgesetzt.
In Abb. 3 sind die katabolischen Prozesse schematisch dargestellt. Bei der CO2 Fixierung wird bei zwei Reaktionen Energie verbraucht.
1. Die Reaktion von HCOOH mit THF (2) wird von der Formyl-THF-Synthetase (FTS) katalysiert und verbraucht ATP. Dieses wird im Prinzip durch die Acetat-Kinase (AcKi) bei der finalen Bildung von Essigsäure aus Acetylphosphat[14] (1a) regeneriert. (Abb. 3, unten)
2. Bei der Fixierung des zweiten CO2 wird von der CO-Dehydrogenase / Acetyl-CoA-Synthase (CO-Dh) Ferredoxin (Fd) oxidiert, das beim heterotrophen Wachstum beispielsweise durch die Pyruvat:Fd-Oxidoreductase (PFdO) regeneriert wird. Beim lithoautotrophen Wachstum muss indes das Ferredoxin endergon mittels H2 regeneriert werden. Der Mechanismus wurde erst im zweiten Jahrzehnt des 21. Jahrhunderts aufgeklärt:
- H2 wird in den Gesamtprozess durch eine Elektronenbifurkierende Hydrogenase (EBH) eingespeist. Dieses cytosolische Enzym regeneriert Ferredoxin und NADH. Dabei wird im Zellinneren H+ freigesetzt, das aus der Zelle gelangen muss, damit sie nicht übersäuert. Die Hydrogenase regeneriert nach dem Prinzip der Elektronenbifurkation synchron mit Ferredoxin auch NADH aus NAD+.
- Das NADH wird von der Methylene-THF-Dehydrogenase (MTDe) verbraucht, ebenso von einer bifurkierenden Methylene-THF-Reductase (MTRed), die dabei Ferredoxin reduziert.
- Ein membranständiges Enzym, die Ferredoxin:NAD-Oxidoreductase (Rnf-Komplex, RNF) fungiert schließlich nach dem Chemiosmotischen Prinzip als Ionenpumpe. Es nutzt dabei die Potentialdifferenz zwischen Fdred/Fdox und NADH/NAD+. Der Rückstrom der Ionen treibt die ATP-Regenerierung durch eine Na+-getriebene ATP-Synthase an.
Remove ads
Anmerkungen
- Die früher verwendete Bezeichnung Carbonatatmung ist irreführend, da Carbonate nicht direkt reduziert werden können, sondern vorher zu CO2 umgesetzt werden müssen. Zur Katalyse dieser Reaktion dient das Enzym Carboanhydrase, das auch von acetogenen Bakterien genutzt wird. (Siehe auch Kerry S. Smith, James G. Ferry: Prokaryotic carbonic anhydrases. In: FEMS Microbiology Reviews. 24. Jahrgang, Nr. 4, 2000, S. 335–336, doi:10.1111/j.1574-6976.2000.tb00546 (oxfordjournals.org).)
- Dazu zählen u. a. die Heterofermentative Milchsäuregärung, die Gemischte Säuregärung und die Propionsäuregärung.
Einzelnachweise
Siehe auch
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads
