Top-Fragen
Zeitleiste
Chat
Kontext

Arnoldi-Verfahren

Aus Wikipedia, der freien Enzyklopädie

Remove ads

In der numerischen Mathematik ist das Arnoldi-Verfahren wie das Lanczos-Verfahren ein iteratives Verfahren zur Bestimmung einiger Eigenwerte und zugehöriger Eigenvektoren. Es ist nach Walter Edwin Arnoldi benannt. Im Arnoldi-Verfahren wird zu einer gegebenen Matrix und einem gegebenen Startvektor eine orthonormale Basis des zugeordneten Krylowraumes

berechnet. Da die Spalten bis auf eine etwaige Skalierung genau den in der Potenzmethode berechneten Vektoren entsprechen, ist es klar, dass der Algorithmus instabil wird, wenn zuerst diese Basis berechnet würde und anschließend, zum Beispiel nach Gram-Schmidt, orthonormalisiert würde.

Der Algorithmus kommt allerdings ohne die vorherige Aufstellung der sogenannten Krylowmatrix aus.

Remove ads

Der Algorithmus (MGS-Variante)

Zusammenfassung
Kontext

Gegeben sei eine quadratische Matrix und ein (nicht notwendig normierter) Startvektor .

for and do

for do
end for

end for

Remove ads

Einsatz beim Eigenwertproblem

Zusammenfassung
Kontext

Nach Schritten hat das Arnoldi-Verfahren im Wesentlichen eine Orthonormalbasis in der Matrix bestimmt und eine Hessenbergmatrix

Für diese im Arnoldi-Verfahren berechneten Größen gilt der Zusammenhang

wo der -te Einheitsvektor ist. Daraus folgt:

  • Für definiert die Gleichung einen invarianten Unterraum der Matrix und alle Eigenwerte der Matrix sind auch Eigenwerte von . In diesem Fall bricht das Arnoldi-Verfahren vorzeitig ab aufgrund der zweiten Bedingung .
  • Wenn klein ist, sind die Eigenwerte von gute Approximationen an einzelne Eigenwerte von . Insbesondere Eigenwerte am Rand des Spektrums werden gut approximiert ähnlich wie beim Lanczos-Verfahren.
Remove ads

Anwendung auf Lineare Systeme, FOM und GMRES

Das Arnoldi-Verfahren ist außerdem der Kern-Algorithmus des GMRES-Verfahrens zur Lösung Linearer Gleichungssysteme und der Full Orthogonalization Method (FOM). In der FOM baut man den Krylow-Unterraum und die Basen mit dem Startvektor auf und ersetzt beim linearen System die Matrix durch die Approximation . Die rechte Seite ist also Element des Krylowraums, . Die Näherungslösung im Krylow-Raum wird in der Basisdarstellung bestimmt anhand des Systems

Dies entspricht der Bedingung und definiert die Lösung durch die Orthogonalitätsbedingung . Daher ist die FOM ein Galerkin-Verfahren. Löst man das kleine System mit einer QR-Zerlegung von , so unterscheidet sich die Methode nur minimal vom Pseudocode im Artikel GMRES-Verfahren.

Remove ads

Literatur

  • W.E. Arnoldi: The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem. In: Quarterly of Applied Mathematics. 9. Jahrgang, 1951, S. 17–29.
  • Gene H. Golub, Charles F. Van Loan: Matrix Computations. 3. Auflage. The Johns Hopkins University Press, 1996, ISBN 0-8018-5414-8.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads