Top-Fragen
Zeitleiste
Chat
Kontext

Satz von Cantor-Bernstein-Schröder

mathematischer Satz Aus Wikipedia, der freien Enzyklopädie

Remove ads
Remove ads

Der Satz von Cantor-Bernstein-Schröder oder kurz Äquivalenzsatz ist ein Satz der Mengenlehre über die Mächtigkeiten zweier Mengen. Er ist nach den Mathematikern Georg Cantor (der ihn als erster formuliert hat), Felix Bernstein sowie Ernst Schröder (die Beweise veröffentlichten) benannt und wird in der Literatur auch als Cantor-Bernstein-Schröderscher [Äquivalenz-]Satz, Satz von Cantor-Bernstein, Äquivalenzsatz von Cantor-Bernstein, Satz von Schröder-Bernstein oder ähnlich bezeichnet. Allerdings wurde er unabhängig auch von Richard Dedekind bewiesen.

Der Satz besagt: Ist eine Menge A gleichmächtig zu einer Teilmenge einer zweiten Menge B und ist diese zweite Menge B gleichmächtig zu einer Teilmenge der ersten Menge A, so sind A und B gleichmächtig.

Der Satz von Cantor-Bernstein-Schröder ist ein wichtiges Hilfsmittel beim Nachweis der Gleichmächtigkeit zweier Mengen.

Remove ads

Geschichte

Zusammenfassung
Kontext

Der Äquivalenzsatz wurde 1887 von Georg Cantor formuliert, aber erst 1897 vom 19-jährigen Felix Bernstein in einem von Georg Cantor geleiteten Seminar und etwa gleichzeitig unabhängig von Ernst Schröder bewiesen. Cantor teilte Bernsteins Beweis noch im gleichen Jahr Émile Borel auf dem ersten internationalen Mathematiker-Kongress in Zürich mit.[1][2]

Thumb
Cantors erste Erwähnung des Äquivalenzsatzes, 1887[3]

Cantor hatte diesen Äquivalenzsatz erstmals in seiner philosophischen Abhandlung Mitteilungen zur Lehre vom Transfiniten[3] aus dem Jahre 1887 (ohne Beweis) mitgeteilt. In seiner großen Arbeit Beiträge zur Begründung der transfiniten Mengenlehre[4] von 1895 hat Cantor diesen Satz erneut aufgestellt und aus dem Vergleichbarkeitssatz für Kardinalzahlen gefolgert. Den Vergleichbarkeitssatz konnte Cantor jedoch nicht beweisen. Er ist nach Friedrich Moritz Hartogs (Über das Problem der Wohlordnung, 1915)[5] mit dem Auswahlaxiom (bzw. Auswahlprinzip oder Wohlordnungssatz) äquivalent.

Dedekind selbst fand den Beweis des Äquivalenzsatzes (welcher sich in seinem Nachlass fand) bereits am 11. Juli 1887, jedoch publizierte er ihn nicht und teilte ihn auch nicht Cantor mit.[6]
Ernst Zermelo entdeckte Dedekinds Beweis wieder und gab 1908 in seiner Abhandlung Untersuchungen über die Grundlagen der Mengenlehre I[7] einen Beweis, wobei er auf die Dedekindsche Kettentheorie aus Dedekinds Schrift Was sind und was sollen die Zahlen? (1888)[8] zurückgriff. Giuseppe Peano gab einen ähnlichen Beweis, wobei es zu einem Prioritätsstreit mit Zermelo kam. Beide Beweise waren die Folge einer Herausforderung von Henri Poincaré, der um 1905 nach Beweisen verlangte, die ohne vollständige Induktion auskommen. Aufgrund von Poincarés Herausforderung wurde auch der Beweis von Julius König publiziert und weitere Forschung angeregt.

Ernst Schröder hatte 1896 (Ueber zwei Definitionen der Endlichkeit und G. Cantor’sche Sätze)[9] eine Beweisskizze publiziert, die sich allerdings als falsch herausstellte, wie Alwin Reinhold Korselt 1911 (Über einen Beweis des Äquivalenzsatzes)[10] bemerkt hatte; Schröder hat dort den Fehler in seinem Beweis bestätigt.

Dass der Satz auch ohne Auswahlaxiom beweisbar ist, haben Richard Dedekind 1887 und Bernstein 1898 in seiner Dissertation gezeigt (Bernsteins Beweis erschien zuerst in Borels Leçons sur la théorie des fonctions[11] und dann nochmals in Bernsteins Abhandlung Untersuchungen aus der Mengenlehre).[12]

Es gibt noch zahlreiche weitere Beweise des Satzes,[13] etwa mithilfe des Fixpunktsatzes von Tarski und Knaster.[14]

Eine passende Bezeichnung für den Äquivalenzsatz wäre Cantor-Dedekindscher Äquivalenzsatz oder Cantor-Dedekind-Bernsteinscher Äquivalenzsatz. Zudem hat Bernstein darauf hingewiesen, dass Cantor selbst die Bezeichnung „Äquivalenzsatz“ vorgeschlagen habe.[15]

Remove ads

Satz

Zusammenfassung
Kontext

Das Cantor-Bernstein-Schröder-Theorem lautet:

Sei eine Menge gleichmächtig zu einer Teilmenge einer Menge , und sei gleichmächtig zu einer Teilmenge von . Dann sind und gleichmächtig.[16][17]

Dabei heißen zwei Mengen gleichmächtig, wenn es eine bijektive Abbildung zwischen ihnen gibt. Ausgedrückt durch die Mächtigkeiten von und lautet das Theorem:

Aus und folgt .

Dabei gilt genau dann, wenn und gleichmächtig sind, und gilt genau dann, wenn gleichmächtig zu einer Teilmenge von ist, das heißt, wenn es eine injektive Abbildung von in gibt. Ausgedrückt durch die Eigenschaften von Funktionen lautet das Theorem:

Seien und Mengen mit einer Injektion und einer Injektion . Dann existiert eine Bijektion .
Remove ads

Beweisidee

Zusammenfassung
Kontext

Im Folgenden ist hier eine Beweisidee gegeben.

Definiere die Mengen:

,
,
.

Für jedes aus setze dann:

Da im Falle, dass nicht in ist, in liegen muss, gibt es ein eindeutig bestimmtes Element und ist eine wohldefinierte Abbildung von nach .

Man kann nun zeigen, dass diese Funktion die gewünschte Bijektion ist.

Beachte, dass diese Definition von nicht konstruktiv ist, d. h., es gibt kein Verfahren, um für beliebige Mengen , und Injektionen , in endlich vielen Schritten zu entscheiden, ob ein aus in liegt oder nicht. Für spezielle Mengen und Abbildungen kann das natürlich möglich sein.

Ein kurzer und leicht verständlicher Beweis findet sich auch in dem Göschen-Bändchen Mengenlehre Erich Kamkes.[18]

Remove ads

Veranschaulichung

Thumb
Beispiel der Definition von

Veranschaulichen kann man sich die Definition von anhand der rechts stehenden Darstellung.

Dargestellt sind Teile der (disjunkten) Mengen und sowie die Abbildungen und . Betrachtet man vereinigt als Graphen, dann zerfällt der Graph in verschiedene Zusammenhangskomponenten. Diese lassen sich in vier Typen einteilen:

  1. beidseitig unendliche Pfade;
  2. endliche Zyklen;
  3. unendliche Pfade, die in beginnen;
  4. unendliche Pfade, die in beginnen

(von jedem Typ ist hier einer vertreten, da der Pfad durch das Element beidseitig unendlich sein soll). Es ist aber allgemein nicht in endlich vielen Schritten entscheidbar, welchen Typ der durch ein vorgegebenes Element gehende Pfad hat.

Die im Abschnitt Beweisidee definierte Menge enthält nun genau die Elemente von , die Teil eines in beginnenden Pfades sind. Die Abbildung wird so definiert, dass sie innerhalb einer jeden Zusammenhangskomponente eine Bijektion der -Elemente auf „im Pfad benachbarte“ -Elemente herstellt (dabei hat man bei den beidseitig unendlichen Pfaden und den endlichen Zyklen eine Richtungswahl und man legt sich auf „rückwärts“ fest).

Remove ads

Verallgemeinerung

Das Cantor-Bernstein-Schröder-Theorem erweist sich als direkte Folge des banachschen Abbildungssatzes.[19][20]

Siehe auch

Literatur

Remove ads

Einzelnachweise

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads