Top-Fragen
Zeitleiste
Chat
Kontext

Funktionenring

Aus Wikipedia, der freien Enzyklopädie

Remove ads

Ein Funktionenring ist in der Mathematik (genauer der Ringtheorie) ein spezieller Ring von Funktionen. Diese spielen eine große Rolle in der abstrakten Algebra, Topologie, sowie zahlreichen Anwendungen der Mathematik in Naturwissenschaften.

Definition

Sei ein Ring, eine nichtleere Menge und

die Menge aller auf definierten Funktionen mit Werten in . Dann sind durch

Verknüpfungen erklärt, mit denen zu einem Ring wird, dem sogenannten Ring der Funktionen.

Remove ads

Wichtige Eigenschaften

  • Der Ring "ererbt" gewisse Eigenschaften von , wie etwa die Kommutativität und das Einselement. Andere Eigenschaften, wie beispielsweise Nullteilerfreiheit, werden nicht "vererbt".
  • Die Menge der konstanten Funktionen bildet einen zu isomorphen Unterring von . Damit kann als Teilring von betrachtet werden.
Remove ads

Beispiele

  • Wählt man als die Menge der reellen Zahlen mit den üblichen Addition und Multiplikation und als eine offene Teilmenge von , so kann man von stetigen beziehungsweise differenzierbaren Funktionen sprechen. In diesem Falle sind die Mengen und Unterringe von . Dabei ist ein Unterring von .

Auswertungshomomorphismus

Für ein festes ist die Abbildung

ein Ringhomomorphismus. Man bezeichnet ihn als Auswertungshomomorphismus oder auch einfach als die Auswertung an der Stelle .

Remove ads

Literatur

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads