Top-Fragen
Zeitleiste
Chat
Kontext

Isometrische Isomorphie

Begriff aus der Funktionalanalysis Aus Wikipedia, der freien Enzyklopädie

Remove ads

Isometrische Isomorphie beschreibt in der Funktionalanalysis einen Zusammenhang zwischen zwei unterschiedlichen Räumen, die geometrisch identisch sind.

Definition

Zwei normierte Räume und sind isometrisch isomorph, wenn zwischen ihnen ein Vektorraumisomorphismus existiert, der gleichzeitig eine Isometrie ist, also erfüllt. Man schreibt dann .

Dies bedeutet, dass man die Räume eineindeutig miteinander identifizieren und Längenmessungen im einen auf den anderen übertragen kann. Der Operator übernimmt die Identifizierung von Elementen aus mit Elementen aus Die Isometrie von sichert die Normerhaltung bei diesem Wechsel. Offenbar ist die Umkehrung wieder eine isometrische Isomorphie.

Remove ads

Beispiele

Remove ads

Literatur

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads