Loading AI tools
Näherungsverfahren für die Nullstellen einer Funktion Aus Wikipedia, der freien Enzyklopädie
Das Newtonverfahren, auch Newton-Raphson-Verfahren (benannt nach Sir Isaac Newton 1669 und Joseph Raphson 1690), ist in der Mathematik ein häufig verwendeter Approximationsalgorithmus zur numerischen Lösung von nichtlinearen Gleichungen und Gleichungssystemen. Im Falle einer Gleichung mit einer Variablen lassen sich zu einer gegebenen stetig differenzierbaren Funktion Näherungswerte zu Lösungen der Gleichung , d. h. Näherungen der Nullstellen dieser Funktion finden. Die grundlegende Idee dieses Verfahrens ist, die Funktion in einem Ausgangspunkt zu linearisieren, d. h. ihre Tangente zu bestimmen, und die Nullstelle der Tangente als verbesserte Näherung der Nullstelle der Funktion zu verwenden. Die erhaltene Näherung dient als Ausgangspunkt für einen weiteren Verbesserungsschritt. Diese Iteration erfolgt, bis die Änderung in der Näherungslösung eine festgesetzte Schranke unterschritten hat. Das Iterationsverfahren konvergiert im günstigsten Fall asymptotisch mit quadratischer Konvergenzordnung, die Zahl der korrekten Dezimalstellen verdoppelt sich dann in jedem Schritt.
Formal ausgedrückt, wird ausgehend von einem Startwert die Iteration
wiederholt, bis eine hinreichende Genauigkeit erzielt wird.
Isaac Newton verfasste im Zeitraum 1664 bis 1671 die Arbeit „Methodus fluxionum et serierum infinitarum“ (latein. für: Von der Methode der Fluxionen und unendlichen Folgen). Darin erklärt er einen neuen Algorithmus zum Lösen einer polynomialen Gleichung am Beispiel . Dazu kann man leicht den Punkt als erste Näherung raten. Newton machte den Ansatz mit einem als „klein“ angenommenen und setzte diesen in die Gleichung ein:
Nach den binomischen Formeln gilt
Da „klein“ sein soll, können die Terme höherer Ordnung gegenüber den linearen und konstanten vernachlässigt werden, womit bzw. übrig bleibt. Wir können nun dieses Vorgehen wiederholen und ansetzen, in die zweite Gleichung einsetzen, höhere Terme weglassen und erhalten.
Joseph Raphson beschrieb 1690 in der Arbeit „Analysis Aequationum universalis“ diesen Rechenprozess formal und illustrierte den Formalismus an der allgemeinen Gleichung dritten Grades, wobei er die nachfolgende Iterationsvorschrift fand.[1]
Die abstrakte Form des Verfahrens mit Benutzung der Ableitung stammt von Thomas Simpson.
Anschaulich gelangt man wie folgt zu diesem Verfahren: Sei eine stetig differenzierbare reelle Funktion, von der wir eine Stelle im Definitionsbereich mit „kleinem“ Funktionswert kennen. Wir wollen einen Punkt nahe finden, der eine verbesserte Näherung der Nullstelle darstellt. Dazu linearisieren wir die Funktion an der Stelle , d. h. wir ersetzen sie durch ihre Tangente im Punkt mit Anstieg .
Die Tangente ist durch die Funktion gegeben. Setzen wir ein, so erhalten wir
Wir wählen als die einzige Nullstelle dieser linearen Funktion,
Wenden wir diese Konstruktion mehrfach an, so erhalten wir aus einer ersten Stelle eine unendliche Folge von Stellen , die durch die Rekursionsvorschrift
definiert ist. Diese Vorschrift wird auch als Newtoniteration bezeichnet, die Funktion als Newtonoperator. Die Newtoniteration ist ein spezieller Fall einer Fixpunktiteration, falls die Folge gegen konvergiert, so gilt und daher .
Die Kunst der Anwendung des Newtonverfahrens besteht darin, geeignete Startwerte zu finden. Je mehr über die Funktion bekannt ist, desto kleiner lässt sich die notwendige Menge von Startwerten gestalten.
Viele nichtlineare Gleichungen haben mehrere Lösungen, so hat ein Polynom -ten Grades bis zu Nullstellen. Will man alle Nullstellen in einem bestimmten Bereich ermitteln, so muss zu jeder Nullstelle ein passender Startwert in gefunden werden, für den die Newtoniteration konvergiert. Dazu könnte man z. B. per Bisektion genügend kleine isolierende Intervalle zu jeder Nullstelle bestimmen.
Die Quadratwurzel einer Zahl ist die positive Nullstelle der Funktion . Diese Funktion hat die Ableitung , die Newtoniteration erfolgt also nach der Vorschrift
Der Vorteil dieser Vorschrift gegenüber dem Wurzelziehen nach Heron (siehe unten) ist, dass es divisionsfrei ist, sobald einmal der Kehrwert von bestimmt wurde. Als Startwert wurde in der Tabelle gewählt. Die Iterierten wurden an der ersten ungenauen Stelle abgeschnitten. Es ist zu erkennen, dass nach wenigen Schritten die Anzahl gültiger Stellen schnell wächst.
n | bei | bei | bei |
0 | |||
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
Betrachten wir die Differenz zum Grenzwert im -ten Schritt, so kann mittels der binomischen Formeln die Differenz im -ten Schritt zweimal abgespalten werden:
Nach der Ungleichung vom arithmetischen und geometrischen Mittel gilt , so dass der zweite Faktor sinnvoll durch beschränkt werden kann. Ist die Differenz im -ten Schritt eine kleine Zahl, so ist die Differenz im -ten Schritt proportional zum Quadrat davon, also wesentlich kleiner. So entsteht durch Quadrieren eines Fehlers eine Fehlerabschätzung proportional zu . Deshalb spricht man davon, dass sich die Anzahl der gültigen Stellen in jedem Schritt der Newtoniteration ungefähr verdoppelt.
Das Newtonverfahren ist ein sogenanntes lokal konvergentes Verfahren. Konvergenz der in der Newtoniteration erzeugten Folge zu einer Nullstelle ist also nur garantiert, wenn der Startwert, d. h. das 0-te Glied der Folge, schon „ausreichend nahe“ an der Nullstelle liegt. Ist der Startwert zu weit entfernt, ist das Konvergenzverhalten nicht festgelegt, das heißt, es ist sowohl eine Divergenz der Folge möglich als auch eine Oszillation (bei der sich endlich viele Funktionswerte abwechseln) oder eine Konvergenz gegen eine andere Nullstelle der betrachteten Funktion.
Ist der Startwert so gewählt, dass das Newtonverfahren konvergiert, so ist die Konvergenz allerdings quadratisch, also mit der Konvergenzordnung 2 (falls die Ableitung an der Nullstelle nicht verschwindet). Die Menge der Startpunkte, für die das Newtonverfahren gegen eine bestimmte Nullstelle konvergiert, bildet den Einzugsbereich dieser Nullstelle. Färbt man für eine Polynomfunktion, mit reellen oder komplexen Koeffizienten, die Einzugsbereiche verschiedener Nullstellen in der komplexen Ebene unterschiedlich ein, so ergibt sich ein Newtonfraktal. In diesem ist zu erkennen, dass die Einzugsbereiche Bassins, d. h. Kreisscheiben um die Nullstellen enthalten, aus welchen heraus die Newtoniteration stabil gegen die Nullstelle im Zentrum konvergiert. Aber es ist auch zu erkennen, dass die Ränder der Einzugsbereiche „ausgefranst“ sind, sie haben sogar eine fraktale Struktur. Geringe Abweichungen im Startpunkt können also zu unterschiedlichen Nullstellen führen.
Falls es jedoch im Intervall genau eine Nullstelle gibt, in durchweg sowie gilt und der Startwert links von der Nullstelle gewählt wird, dann konvergiert die Folge im Newtonverfahren stets, und zwar streng monoton wachsend (siehe Abbildung unten bzw. die Tabelle oben ab ).
Sei eine zweimal stetig differenzierbare reelle Funktion und eine einfache Nullstelle von , in welcher die Ableitung somit keine Nullstelle hat. Das bedeutet, dass der Graph der Funktion transversal, d. h. nicht-berührend, die -Achse schneidet. Sei ein Punkt nahe bei . Dann kann die Taylorformel zweiten Grades (mit Lagrange-Restglied)
nach der Differenz umgestellt werden,
Es wird nun so umgestellt, dass der Newtonoperator auf der rechten Seite erscheint,
Seien ein Intervall um ohne Nullstelle der Ableitung und sowie Schranken der Ableitungen von . Dann folgt für alle die Abschätzung
Mit sei der konstante Faktor bezeichnet. In jedem Schritt der Newtoniteration wird die Größe kleiner sein als das Quadrat derselben Größe im vorhergehenden Schritt, . Nach vollständiger Induktion ergibt sich
Kann also für den Startpunkt der Iteration die Abschätzung garantiert werden, z. B. indem die Intervalllänge von kleiner als ist, so konvergiert die Folge der Newtoniteration gegen die Nullstelle , denn die Folge und damit ist nach der angegebenen Abschätzung eine Nullfolge. Die Verkürzung des Intervalls kann durch einige Iterationen eines langsameren Verfahrens zur Nullstelleneinschränkung erreicht werden, z. B. des Bisektionsverfahrens oder der Regula falsi.
Die aus dieser Abschätzungen folgende Konvergenzgeschwindigkeit wird als quadratisch bezeichnet, die (logarithmische) Genauigkeit bzw. Anzahl gültiger Stellen verdoppelt sich in jedem Schritt. Die Abschätzung des Abstands zur Nullstelle wird oft linear in angegeben, so gilt z. B.