Top-Fragen
Zeitleiste
Chat
Kontext

Prüfergruppe

Begriff Aus Wikipedia, der freien Enzyklopädie

Remove ads

In der Mathematik, speziell in der Gruppentheorie, nennt man für eine Primzahl p jede zur multiplikativen Gruppe

isomorphe Gruppe eine p-Prüfergruppe oder eine p-quasizyklische Gruppe.[1][2] besteht aus den komplexen Einheitswurzeln, deren Ordnung eine Potenz von p ist.

Es handelt sich um eine abelsche, abzählbare Gruppe.

Definitionsgemäß sind die p-Prüfergruppen untereinander isomorph, daher spricht man ohne nähere Präzisierung einfach von der p-Prüfergruppe. Man sagt, eine Gruppe G sei eine Prüfergruppe, wenn es eine Primzahl p gibt, so dass G eine p-Prüfergruppe ist. Die Prüfergruppen zu verschiedenen Primzahlen sind nicht isomorph.

Die Prüfergruppen sind zu Ehren des Mathematikers Heinz Prüfer benannt.

Remove ads

Äquivalente Definitionen

Zusammenfassung
Kontext

Es seien p eine Primzahl und G eine Gruppe. Jede der folgenden fünf Eigenschaften ist äquivalent dazu, dass G eine p-Prüfergruppe ist, und jede dieser Eigenschaften kann daher als Definition der Prüfergruppen verwendet werden.

a) G ist isomorph zur Faktorgruppe , wobei die von den rationalen Zahlen mit gebildete Untergruppe von bezeichnet.

Beweis: Der Homomorphismus ist surjektiv und hat den Kern .

b) G ist isomorph zur Faktorgruppe , wobei F die freie abelsche Gruppe (das heißt der freie -Modul) mit einer abzählbar unendlichen Basis und R die von erzeugte Untergruppe von F ist.[3]

c) G hat eine Präsentation

Beweis: Sei L eine freie (nichtabelsche) Gruppe über einer abzählbaren Basis und S der von erzeugte Normalteiler. Für jede natürliche Zahl j sei das kanonische Bild von in . Es ist klar, dass von je zwei der Elemente eines eine Potenz des anderen ist, das heißt die vertauschen miteinander. Da sie erzeugen, ist abelsch, mit anderen Worten, S enthält die Kommutatorgruppe K(L). Nach dem zweiten Isomorphiesatz ist daher isomorph zu . Nun ist eine freie, abelsche Gruppe (frei als abelsche Gruppe) mit den Bildern der Elemente als Basis in und wird von erzeugt. Jetzt schließt man mittels b) weiter.

d) G hat ein Erzeugendensystem so dass , und für alle .[4]

e) G ist die Vereinigung einer aufsteigenden Folge , wobei Cn für jeden Index n eine zyklische Gruppe der Ordnung pn ist.[5]

Remove ads

Eigenschaften

  • Jede echte Untergruppe einer Prüfergruppe ist zyklisch und insbesondere endlich. Die Prüfergruppe besitzt für jede Zahl n genau eine Untergruppe der Ordnung pn. Die Menge der Untergruppen einer Prüfergruppe ist durch die Inklusion wohlgeordnet. Die Prüfergruppe ist also als -Modul nicht noethersch.
  • Eine unendliche, abelsche Gruppe ist genau dann eine Prüfergruppe, wenn sie isomorph zu jeder Faktorgruppe nach einer echten Untergruppe ist.[6]
  • Die Prüfergruppen sind teilbar. Ihre Bedeutung erschließt sich aus dem folgenden Satz:
Jede teilbare, abelsche Gruppe ist isomorph zu einer (endlichen oder unendlichen) direkten Summe, in der jeder Summand eine Prüfergruppe oder isomorph zur additiven Gruppe der rationalen Zahlen ist.[7][8]
Beispielsweise ist die additive Gruppe die direkte Summe ihrer p-Sylowgruppen, die nichts anderes als die p-Prüfergruppen sind.
Remove ads

Einzelnachweise

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads