Loading AI tools
Aus Wikipedia, der freien Enzyklopädie
Als Störstelle wird in der Festkörperphysik und Werkstoffwissenschaft ein fehlendes Atom (Leerstellen) oder ein Substitutionsatom (nulldimensionale Gitterfehler) in einem (hochreinen) Kristall bezeichnet, das heißt, sie sind eine Störung der regulären Kristallgitterstruktur.[1]
Durch die Störung können lokal zusätzliche elektronische Energieniveaus entstehen. Im Fall von Halbleitern können diese im verbotenen Band liegen und so die elektronischen und optischen Eigenschaften entscheidend beeinflussen. Beispielsweise kann durch gezieltes Einbringen von Fremdatomen (Dotierung) die elektrische Leitfähigkeit um mehrere Größenordnungen erhöht werden, vgl. Störstellenleitung. Als potentielle Haftstelle und Rekombinationszentrum kann eine Störstelle aber auch die elektrische Leitfähigkeit verringern.
Wie bereits erwähnt erhöht das Vorhandensein von Störstellen (anderer Wertigkeit) die Leitungseigenschaften von elektrischem Strom bei niedrigeren Temperaturen. Die Ursache dafür liegt in der Erzeugung von Zwischenniveaus in der Bandlücke des Halbleiters. Dabei werden zwei Arten von Störstellen unterschieden:
Auch wenn beide Dotierungsarten die Leitfähigkeit (fast gleich) erhöhen, sind die zugrundeliegenden Mechanismen recht unterschiedlich:
Neben der zuvor beschrieben Unterscheidung werden Störstellen auch hinsichtlich der Lage ihrer Energieniveaus unterschieden:
Je nach Materialkomposition kann eine Störstelle auch mehr als eine Haftstelle im Energieband erzeugen. Diese können sowohl als Donator- als auch als Akzeptorniveau wirken. Beispielsweise erzeugt Schwefel in einem Siliciumkristall ein Donatorniveau bei ED = 260 meV und ein Akzeptorniveau bei EA = 480 meV[2].
Durch die zusätzlichen Energieniveaus ergibt sich eine Verschiebung der Zustandsdichte und somit des Fermi-Niveaus , das nach der Fermi-Dirac-Statistik mit der Besetzungswahrscheinlichkeit ½ besetzt ist.
Neben Fremdatomen mit einer unterschiedlichen Zahl an Außenelektronen können auch Fremdatome mit gleicher Anzahl von Außenelektronen wie das Atom, das sie ersetzen, in einen Halbleiter eingebracht werden. Diese Störstellen werden isoelektronische[4] (bzw. isovalente[5]) Störstellen genannt, beispielsweise Störstellen, die durch die Germanium-Dotierung eines Silicium-Kristalls entstehen.
Besonders bei vierwertigen Materialien kommt es dabei häufig zur Ausbildung zweier Störstellenniveaus, so erzeugt Germanium zwei Donatorniveaus im Silicium-Energieband, bei +0,5 eV (gemessen von der Valenzbandkante) und −0,27 eV (gemessen von der Leitungsbandkante).[2] Da jedoch alle Valenzelektronen für die Bindung im Kristall benötigt werden, sind isoelektronische Störstellen neutral geladen.
Da sie Einfluss auf die optischen Eigenschaften von Halbleitern haben, werden isoelektronische Störstellen vor allem für optische Anwendungen eingesetzt. Ein bekanntes Beispiel sind Galliumphosphid-Kristalle (GaP), bei denen die Dotierung mit Stickstoff die Herstellung intensiv grün leuchtender Lumineszenzdioden ermöglicht.[4][5]
In der Halbleitertechnik sind Fremdatome mit anderer Wertigkeit technisch interessante Störstellen, beispielsweise Bor oder Phosphor für Silicium-Kristalle. Das gezielte Einbringen von Fremdatomen wird als Dotierung bezeichnet.
Übliche Konzentrationen bewegen sich dabei im Bereich von 1014 bis 1017 cm−3 (die Konzentration der Si-Atome selbst beträgt 5·1022 cm−3). Durch die relativ niedrigen Konzentrationen werden (auf den gesamten Kristall gesehen) die chemischen und kristallographischen Eigenschaften nur unwesentlich verändert.
Elektrisch haben diese Störstellen (anderer Wertigkeit) jedoch große Bedeutung. Sie erzeugen Haftstellen (engl. traps), ortsgebundene Energieniveaus im Bereich der Energielücke (Bandlücke) von Halbleitern, also im nicht von Elektronen besetzbaren Energiebereich zwischen dem Valenz- und dem Leitungsband. Auf diese Weise kann das Leitungsverhalten der Halbleiter gezielt beeinflusst werden. Durch die Störstellen sind auch bei tieferen Temperaturen mehr freie Ladungsträger vorhanden (als bei hochreinen Halbleitern), was zu einer höheren elektrischen Leitfähigkeit führt. Den zugehörigen Mechanismus bezeichnet man als Störstellenleitung – im Gegensatz dazu steht die Eigenleitung von intrinsischen (reinen) Halbleitern bei höheren Temperaturen.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.