Loading AI tools
Kreiskoordinatensystem Aus Wikipedia, der freien Enzyklopädie
In der Mathematik und Geodäsie versteht man unter einem Polarkoordinatensystem (auch: Kreiskoordinatensystem) ein zweidimensionales Koordinatensystem, in dem jeder Punkt in einer Ebene durch den Abstand von einem vorgegebenen festen Punkt und durch den Winkel zu einer festen Richtung festgelegt wird.
Der feste Punkt wird als Pol bezeichnet; er entspricht dem Ursprung bei einem kartesischen Koordinatensystem. Der vom Pol in der festgelegten Richtung ausgehende Strahl heißt Polarachse. Der Abstand vom Pol wird meist mit oder bezeichnet und heißt Radius oder Radialkoordinate, der Winkel wird mit oder bezeichnet und heißt Winkelkoordinate, Polarwinkel, Azimut oder Argument.
Polarkoordinaten bilden einen Spezialfall von orthogonalen Koordinaten. Sie sind hilfreich, wenn sich das Verhältnis zwischen zwei Punkten leichter durch Winkel und Abstände beschreiben lässt, als dies mit - und -Koordinaten der Fall wäre. In der Geodäsie sind Polarkoordinaten die häufigste Methode zur Einmessung von Punkten (Polarmethode). In der Funknavigation wird das Prinzip oft als „Rho-Theta“ (für Distanz- und Richtungsmessung) bezeichnet.
In der Mathematik wird die Winkelkoordinate im mathematisch positiven Drehsinn (Gegenuhrzeigersinn) gemessen. Wird gleichzeitig ein kartesisches Koordinatensystem benutzt, so dient in der Regel dessen Koordinatenursprung als Pol und die -Achse als Polarachse. Die Winkelkoordinate wird also von der -Achse aus in Richtung der -Achse gemessen. In der Geodäsie und in der Navigation wird das Azimut von der Nordrichtung aus im Uhrzeigersinn gemessen.
Polarkoordinatenpapier ist mit einem Polarkoordinatensystem bedruckt.
Die Begriffe Winkel und Radius wurden bereits von den Menschen des Altertums im ersten Jahrtausend vor Christus verwendet. Der griechische Astronom Hipparchos (190–120 v. Chr.) erstellte eine Tafel von trigonometrischen Sehnenfunktionen, um die Länge der Sehne für die einzelnen Winkel zu finden. Mit Hilfe dieser Grundlage war es ihm möglich, die Polarkoordinaten zu nutzen, um damit die Position bestimmter Sterne festlegen zu können. Sein Werk umfasste jedoch nur einen Teil des Koordinatensystems.[1]
In seiner Abhandlung Über Spiralen beschreibt Archimedes eine Spirallinie mit einer Funktion, deren Radius sich abhängig von seinem Winkel ändert. Die Arbeit des Griechen umfasste jedoch noch kein volles Koordinatensystem.
Es gibt verschiedene Beschreibungen, um das Polarkoordinatensystem als Teil eines formalen Koordinatensystems zu definieren. Die gesamte Historie zu diesem Thema wird in dem Aufsatz Origin of Polar Coordinates (Ursprung der Polarkoordinaten) des Harvard-Professors Julian Coolidge zusammengefasst und erläutert.[2] Demnach führten Grégoire de Saint-Vincent und Bonaventura Cavalieri diese Konzeption unabhängig voneinander in der Mitte des 17. Jahrhunderts ein. Saint-Vincent schrieb im Jahre 1625 auf privater Basis über dieses Thema und veröffentlichte seine Arbeit 1647, während Cavalieri seine Ausarbeitung 1635 veröffentlichte, wobei eine korrigierte Fassung 1653 erschien. Cavalieri benutzte Polarkoordinaten anfangs, um ein Problem in Bezug auf die Fläche der Archimedischen Spirale zu lösen. Etwas später verwendete Blaise Pascal Polarkoordinaten, um die Länge von parabolischen Winkeln zu berechnen.
In dem Werk Method of Fluxions (Fluxionsmethode) (geschrieben 1671, veröffentlicht 1736) betrachtet Sir Isaac Newton die Transformation zwischen Polarkoordinaten, auf die er sich als „Seventh Manner; For Spirals“, (Siebte Methode; Für Spiralen) bezog, und neun anderen Koordinatensystemen.[3]
Es folgte Jacob Bernoulli, der in der Fachzeitschrift Acta Eruditorum (1691) ein System verwendete, das aus einer Geraden und einem Punkt auf dieser Geraden bestand, die er Polarachse bzw. Pol nannte. Die Koordinaten wurden darin durch den Abstand von dem Pol und dem Winkel zu der Polarachse festgelegt. Bernoullis Arbeit reichte bis zu der Formulierung des Krümmungskreises von Kurven, die er durch die genannten Koordinaten ausdrückte.
Der heute gebräuchliche Begriff Polarkoordinaten wurde von Gregorio Fontana schließlich eingeführt und in italienischen Schriften des 18. Jahrhunderts verwendet. Im Folgenden übernahm George Peacock im Jahre 1816 diese Bezeichnung in die englische Sprache, als er die Arbeit von Sylvestre Lacroix Differential and Integral Calculus (Differential und Integralberechnung) in seine Sprache übersetzte.[4][5]
Alexis-Claude Clairaut hingegen war der erste, der über Polarkoordinaten in drei Dimensionen nachdachte, deren Entwicklung jedoch erst dem Schweizer Mathematiker Leonhard Euler gelang.[2]
Die Polarkoordinaten eines Punktes in der euklidischen Ebene (ebene Polarkoordinaten) werden in Bezug auf einen Koordinatenursprung (einen Punkt der Ebene) und eine Richtung (einen im Koordinatenursprung beginnenden Strahl) angegeben.
Das Polarkoordinatensystem ist dadurch eindeutig festgelegt, dass ein ausgezeichneter Punkt, auch Pol genannt, den Ursprung/Nullpunkt des Koordinatensystems bildet. Ferner wird ein von ihm ausgehender Strahl als sogenannte Polachse ausgezeichnet. Letztlich muss noch eine Richtung (von zwei möglichen), die senkrecht zu dieser Polachse ist, als positiv definiert werden, um den Drehsinn / die Drehrichtung / die Orientierung festzulegen. Nun lässt sich ein Winkel, der Polarwinkel, zwischen einem beliebigen Strahl, der durch den Pol geht, und dieser ausgezeichneten Polachse definieren. Er ist nur bis auf ganzzahlige Umdrehungen um den Pol eindeutig, unabhängig davon, was als Winkelmaß für ihn gewählt wird. Auf der Polachse selbst erfolgt noch eine beliebige, aber feste Skalierung, um die radiale Einheitslänge zu definieren. Nun kann jedem Paar ein Punkt der Ebene eindeutig zugeordnet werden, wobei man die erste Komponente als radiale Länge und die zweite als polaren Winkel ansieht. Solch ein Zahlenpaar bezeichnet man als (nicht notwendigerweise eindeutige) Polarkoordinaten eines Punktes in dieser Ebene.
Die Koordinate , eine Länge, wird als Radius (in der Praxis auch als Abstand) und die Koordinate als (Polar)winkel oder, in der Praxis (gelegentlich) auch als Azimut bezeichnet.
In der Mathematik wird meistens der Winkel im Gegenuhrzeigersinn als positiv definiert, wenn man senkrecht von oben auf die Ebene (Uhr) schaut. Also geht die Drehrichtung von rechts nach oben (und weiter nach links). Als Winkelmaß wird dabei der Radiant als Winkeleinheit bevorzugt, weil es dann analytisch am elegantesten zu handhaben ist. Die Polarachse zeigt in grafischen Darstellungen des Koordinatensystems typischerweise nach rechts.
Wenn man ein kartesisches Koordinatensystem mit gleichem Ursprung wie das Polarkoordinatensystem, dabei die -Achse in der Richtung der Polarachse, und schließlich die positive -Achse in Richtung des positiven Drehsinnes wählt – wie in der Abbildung oben rechts dargestellt –, so ergibt sich für die kartesischen Koordinaten und eines Punktes:
Mit komplexen Zahlen und komplexwertigen Funktionen lässt sich dies schreiben als
Die Umrechnung von kartesischen Koordinaten in Polarkoordinaten ist etwas schwieriger, weil man mathematisch gesehen dabei immer auf eine (nicht den gesamten Wertebereich des Vollwinkels umfassende) trigonometrische Umkehrfunktion angewiesen ist. Zunächst kann aber der Radius mit dem Satz des Pythagoras einfach wie folgt berechnet werden:
Bei der Bestimmung des Winkels müssen zwei Besonderheiten der Polarkoordinaten berücksichtigt werden:
Für die Berechnung von kann jede der Gleichungen
benutzt werden. Allerdings ist der Winkel dadurch nicht eindeutig bestimmt, auch nicht im Intervall oder , weil keine der drei Funktionen , und in diesen Intervallen injektiv ist. Die letzte Gleichung ist außerdem für nicht definiert. Deshalb ist eine Fallunterscheidung nötig, die davon abhängt, in welchem Quadranten sich der Punkt befindet, das heißt von den Vorzeichen von und .
Mit komplexen Zahlen und komplexwertigen Funktionen lässt sich die Transformation schreiben als
Mit Hilfe des Arkustangens kann wie folgt im Intervall bzw. bestimmt werden:
Einige Programmiersprachen (so zuerst Fortran 77) und Anwendungsprogramme (etwa Microsoft Excel) bieten eine Arkustangens-Funktion mit zwei Argumenten an, welche die dargestellten Fallunterscheidungen intern berücksichtigt und für beliebige Werte von und berechnet.
Zum selben Ergebnis kommt man, wenn man den Punkt in der kartesischen Ebene als komplexe Zahl auffasst und den Winkel
mittels der Argument-Funktion berechnet oder den Imaginärteil des Logarithmus von nimmt.
Mit Hilfe des Arkuskosinus kommt man mit nur zwei Fallunterscheidungen aus:
Durch Ausnutzen der Tatsache, dass in einem Kreis ein Mittelpunktswinkel stets doppelt so groß ist wie der zugehörige Umfangswinkel, kann das Argument auch mit Hilfe der Arkustangens-Funktion mit weniger Fallunterscheidungen berechnet werden:
Die Berechnung des Winkels im Intervall bzw. kann im Prinzip so durchgeführt werden, dass der Winkel zunächst wie vorstehend beschrieben im Intervall berechnet wird und, nur falls er negativ ist, noch um vergrößert wird:
Durch Abwandlung der ersten obenstehenden Formel kann wie folgt direkt im Intervall bestimmt werden:
Die Formel mit dem Arkuskosinus kommt auch in diesem Fall mit nur zwei Fallunterscheidungen aus:
Bei geodätischen oder anderen Berechnungen können sich Azimute mit Werten außerhalb des üblichen Intervalls mit der unteren Grenze (oder auch ) ergeben. Die Gleichung