Faraday cage

Enclosure of conductive mesh used to block electric fields / From Wikipedia, the free encyclopedia

Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about Faraday cage?

Summarize this article for a 10 years old

SHOW ALL QUESTIONS

A Faraday cage or Faraday shield is an enclosure used to block electromagnetic fields. A Faraday shield may be formed by a continuous covering of conductive material, or in the case of a Faraday cage, by a mesh of such materials. Faraday cages are named after scientist Michael Faraday, who invented them in 1836.[1]

Video of a Faraday cage shielding a man from electricity
Cage_de_Faraday.jpg
Faraday cage demonstration on volunteers in the Palais de la Découverte in Paris
EMI_shielding_faraday_cage.jpg
EMI shielding around an MRI machine room
Heimbach_-_power_plant_07_ies.jpg
Faraday shield at a power plant in Heimbach, Germany
Faraday bag
Faraday bags are a type of Faraday cage made of flexible metallic fabric. They are typically used to block remote wiping or alteration of wireless devices recovered in criminal investigations, but may also be used by the general public to protect against data theft or to enhance digital privacy.

A Faraday cage operates because an external electrical field causes the electric charges within the cage's conducting material to be distributed so that they cancel the field's effect in the cage's interior. This phenomenon is used to protect sensitive electronic equipment (for example RF receivers) from external radio frequency interference (RFI) often during testing or alignment of the device. They are also used to protect people and equipment against actual electric currents such as lightning strikes and electrostatic discharges, since the enclosing cage conducts current around the outside of the enclosed space and none passes through the interior.

Faraday cages cannot block stable or slowly varying magnetic fields, such as the Earth's magnetic field (a compass will still work inside). To a large degree, though, they shield the interior from external electromagnetic radiation if the conductor is thick enough and any holes are significantly smaller than the wavelength of the radiation. For example, certain computer forensic test procedures of electronic systems that require an environment free of electromagnetic interference can be carried out within a screened room. These rooms are spaces that are completely enclosed by one or more layers of a fine metal mesh or perforated sheet metal. The metal layers are grounded to dissipate any electric currents generated from external or internal electromagnetic fields, and thus they block a large amount of the electromagnetic interference. See also electromagnetic shielding. They provide less attenuation of outgoing transmissions than incoming: they can block electromagnetic pulse (EMP) waves from natural phenomena very effectively, but a tracking device, especially in upper frequencies, may be able to penetrate from within the cage (e.g., some cell phones operate at various radio frequencies so while one frequency may not work, another one will).

The reception or transmission of radio waves, a form of electromagnetic radiation, to or from an antenna within a Faraday cage is heavily attenuated or blocked by the cage; however, a Faraday cage has varied attenuation depending on wave form, frequency, or distance from receiver/transmitter, and receiver/transmitter power. Near-field, high-powered frequency transmissions like HF RFID are more likely to penetrate. Solid cages generally attenuate fields over a broader range of frequencies than mesh cages.