Top Qs
Timeline
Chat
Perspective

Gödel Prize

Computer science award From Wikipedia, the free encyclopedia

Gödel Prize
Remove ads

The Gödel Prize is an annual prize for outstanding papers in the area of theoretical computer science, given jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery Special Interest Group on Algorithms and Computational Theory (ACM SIGACT). The award is named in honor of Kurt Gödel. Gödel's connection to theoretical computer science is that he was the first to mention the "P versus NP" question, in a 1956 letter to John von Neumann in which Gödel asked whether a certain NP-complete problem could be solved in quadratic or linear time.[1]

Thumb
Kurt Gödel

The Gödel Prize has been awarded since 1993. The prize is awarded alternately at ICALP (even years) and STOC (odd years). STOC is the ACM Symposium on Theory of Computing, one of the main North American conferences in theoretical computer science, whereas ICALP is the International Colloquium on Automata, Languages and Programming, one of the main European conferences in the field. To be eligible for the prize, a paper must be published in a refereed journal within the last 14 (formerly 7) years. The prize includes a reward of US$5000.[2]

The winner of the Prize is selected by a committee of six members. The EATCS President and the SIGACT Chair each appoint three members to the committee, to serve staggered three-year terms. The committee is chaired alternately by representatives of EATCS and SIGACT.

In contrast with the Gödel Prize, which recognizes outstanding papers, the Knuth Prize is awarded to individuals for their overall impact in the field.

Remove ads

Recipients

Summarize
Perspective
More information Year, Name(s) ...
Remove ads

Winning papers

  1. Babai, László; Moran, Shlomo (1988), "Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity class" (PDF), Journal of Computer and System Sciences, 36 (2): 254–276, doi:10.1016/0022-0000(88)90028-1, ISSN 0022-0000
  2. Håstad, Johan (1989), "Almost Optimal Lower Bounds for Small Depth Circuits" (PDF), in Micali, Silvio (ed.), Randomness and Computation, Advances in Computing Research, vol. 5, JAI Press, pp. 6–20, ISBN 978-0-89232-896-3, archived from the original (PDF) on 2012-02-22
  3. Sinclair, A.; Jerrum, M. (1989), "Approximate counting, uniform generation and rapidly mixing Markov chains", Information and Computation, 82 (1): 93–133, doi:10.1016/0890-5401(89)90067-9, ISSN 0890-5401
  4. Jerrum, M.; Sinclair, Alistair (1989), "Approximating the permanent", SIAM Journal on Computing, 18 (6): 1149–1178, CiteSeerX 10.1.1.431.4190, doi:10.1137/0218077, ISSN 1095-7111
  5. Toda, Seinosuke (1991), "PP is as hard as the polynomial-time hierarchy" (PDF), SIAM Journal on Computing, 20 (5): 865–877, CiteSeerX 10.1.1.121.1246, doi:10.1137/0220053, ISSN 1095-7111, archived from the original (PDF) on 2016-03-03, retrieved 2010-06-08
  6. Shor, Peter W. (1997), "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer", SIAM Journal on Computing, 26 (5): 1484–1509, arXiv:quant-ph/9508027, doi:10.1137/S0097539795293172, ISSN 1095-7111, S2CID 2337707
  7. Vardi, Moshe Y.; Wolper, Pierre (1994), "Reasoning about infinite computations" (PDF), Information and Computation, 115 (1): 1–37, doi:10.1006/inco.1994.1092, ISSN 0890-5401, archived from the original (PDF) on 2011-08-25
  8. Feige, Uriel; Goldwasser, Shafi; Lovász, Laszlo; Safra, Shmuel; Szegedy, Mario (1996), "Interactive proofs and the hardness of approximating cliques" (PDF), Journal of the ACM, 43 (2): 268–292, doi:10.1145/226643.226652, ISSN 0004-5411
  9. Arora, Sanjeev; Safra, Shmuel (1998), "Probabilistic checking of proofs: a new characterization of NP" (PDF), Journal of the ACM, 45 (1): 70–122, doi:10.1145/273865.273901, ISSN 0004-5411, S2CID 751563, archived from the original (PDF) on 2011-06-10
  10. Arora, Sanjeev; Lund, Carsten; Motwani, Rajeev; Sudan, Madhu; Szegedy, Mario (1998), "Proof verification and the hardness of approximation problems" (PDF), Journal of the ACM, 45 (3): 501–555, CiteSeerX 10.1.1.145.4652, doi:10.1145/278298.278306, ISSN 0004-5411, S2CID 8561542, archived from the original (PDF) on 2011-06-10
  11. Sénizergues, Géraud (2001), "L(A) = L(B)? decidability results from complete formal systems", Theor. Comput. Sci., 251 (1): 1–166, doi:10.1016/S0304-3975(00)00285-1, ISSN 0304-3975
  12. Freund, Y.; Schapire, R.E. (1997), "A decision-theoretic generalization of on-line learning and an application to boosting" (PDF), Journal of Computer and System Sciences, 55 (1): 119–139, doi:10.1006/jcss.1997.1504, ISSN 1090-2724
  13. Saks, Michael; Zaharoglou, Fotios (2000), "Wait-free k-set agreement is impossible: The topology of public knowledge", SIAM Journal on Computing, 29 (5): 1449–1483, doi:10.1137/S0097539796307698
  14. Agrawal, M.; Kayal, N.; Saxena, N. (2004), "PRIMES is in P", Annals of Mathematics, 160 (2): 781–793, doi:10.4007/annals.2004.160.781, ISSN 0003-486X
  15. Razborov, Alexander A.; Rudich, Steven (1997), "Natural proofs", Journal of Computer and System Sciences, 55 (1): 24–35, doi:10.1006/jcss.1997.1494, ISSN 0022-0000, ECCC TR94-010
  16. Spielman, Daniel A.; Teng, Shang-Hua (2004), "Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time", J. ACM, 51 (3): 385–463, arXiv:math/0212413, doi:10.1145/990308.990310, ISSN 0004-5411
  17. Reingold, Omer; Vadhan, Salil; Wigderson, Avi (2002), "Entropy waves, the zig-zag graph product, and new constant-degree expanders", Annals of Mathematics, 155 (1): 157–187, CiteSeerX 10.1.1.236.8669, doi:10.2307/3062153, ISSN 0003-486X, JSTOR 3062153, MR 1888797, S2CID 120739405
  18. Arora, Sanjeev (1998), "Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems", Journal of the ACM, 45 (5): 753–782, CiteSeerX 10.1.1.23.6765, doi:10.1145/290179.290180, ISSN 0004-5411, S2CID 3023351
  19. Mitchell, Joseph S. B. (1999), "Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems", SIAM Journal on Computing, 28 (4): 1298–1309, doi:10.1137/S0097539796309764, ISSN 1095-7111
  20. Koutsoupias, Elias; Papadimitriou, Christos (2009). "Worst-case equilibria". Computer Science Review. 3 (2): 65–69. doi:10.1016/j.cosrev.2009.04.003.
  21. Roughgarden, Tim; Tardos, Éva (2002). "How bad is selfish routing?". Journal of the ACM. 49 (2): 236–259. CiteSeerX 10.1.1.147.1081. doi:10.1145/506147.506153. S2CID 207638789.
  22. Nisan, Noam; Ronen, Amir (2001). "Algorithmic Mechanism Design". Games and Economic Behavior. 35 (1–2): 166–196. CiteSeerX 10.1.1.21.1731. doi:10.1006/game.1999.0790.
  23. Boneh, Dan; Franklin, Matthew (2003). "Identity-based encryption from the Weil pairing". SIAM Journal on Computing. 32 (3): 586–615. CiteSeerX 10.1.1.66.1131. doi:10.1137/S0097539701398521. MR 2001745.
  24. Joux, Antoine (2004). "A one round protocol for tripartite Diffie-Hellman". Journal of Cryptology. 17 (4): 263–276. doi:10.1007/s00145-004-0312-y. MR 2090557. S2CID 3350730.
  25. Fagin, Ronald; Lotem, Amnon; Naor, Moni (2003). "Optimal aggregation algorithms for middleware". Journal of Computer and System Sciences. 66 (4): 614–656. arXiv:cs/0204046. doi:10.1016/S0022-0000(03)00026-6.
  26. Spielman, Daniel A.; Teng, Shang-Hua (2011). "Spectral Sparsification of Graphs". SIAM Journal on Computing. 40 (4): 981–1025. arXiv:0808.4134. doi:10.1137/08074489X. ISSN 0097-5397. S2CID 9646279.
  27. Spielman, Daniel A.; Teng, Shang-Hua (2013). "A Local Clustering Algorithm for Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning". SIAM Journal on Computing. 42 (1): 1–26. arXiv:0809.3232. doi:10.1137/080744888. ISSN 0097-5397. S2CID 9151077.
  28. Spielman, Daniel A.; Teng, Shang-Hua (2014). "Nearly Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems". SIAM Journal on Matrix Analysis and Applications. 35 (3): 835–885. arXiv:cs/0607105. doi:10.1137/090771430. ISSN 0895-4798. S2CID 1750944.
  29. Brookes, Stephen (2007). "A Semantics for Concurrent Separation Logic" (PDF). Theoretical Computer Science. 375 (1–3): 227–270. doi:10.1016/j.tcs.2006.12.034.
  30. O'Hearn, Peter (2007). "Resources, Concurrency and Local Reasoning" (PDF). Theoretical Computer Science. 375 (1–3): 271–307. doi:10.1016/j.tcs.2006.12.035.
  31. Dwork, Cynthia; McSherry, Frank; Nissim, Kobbi; Smith, Adam (2006). Halevi, Shai; Rabin, Tal (eds.). Calibrating Noise to Sensitivity in Private Data Analysis. Theory of Cryptography (TCC). Lecture Notes in Computer Science. Vol. 3876. Springer-Verlag. pp. 265–284. doi:10.1007/11681878_14. ISBN 978-3-540-32731-8.
  32. Regev, Oded (2009). "On lattices, learning with errors, random linear codes, and cryptography". Journal of the ACM. 56 (6): 1–40. CiteSeerX 10.1.1.215.3543. doi:10.1145/1568318.1568324. S2CID 207156623.
  33. Dinur, Irit (2007). "The PCP theorem by gap amplification". Journal of the ACM. 54 (3): 12–es. doi:10.1145/1236457.1236459. S2CID 53244523.
  34. "A constructive proof of the general Lovász Local Lemma". Journal of the ACM. 57 (2). 2010. doi:10.1145/1667053. ISSN 0004-5411.
  35. Bulatov, Andrei A. (2013). "The complexity of the counting constraint satisfaction problem". Journal of the ACM. 60 (5). Association for Computing Machinery: 1–41. doi:10.1145/2528400. ISSN 0004-5411. S2CID 8964233.
  36. Dyer, Martin; Richerby, David (2013). "An Effective Dichotomy for the Counting Constraint Satisfaction Problem". SIAM Journal on Computing. 42 (3). Society for Industrial & Applied Mathematics (SIAM): 1245–1274. arXiv:1003.3879. doi:10.1137/100811258. ISSN 0097-5397. S2CID 1247279.
  37. Cai, Jin-Yi; Chen, Xi (2017-06-22). "Complexity of Counting CSP with Complex Weights". Journal of the ACM. 64 (3). Association for Computing Machinery: 1–39. arXiv:1111.2384. doi:10.1145/2822891. ISSN 0004-5411. S2CID 1053684.
  38. Brakerski, Zvika; Vaikuntanathan, Vinod (January 2014). "Efficient Fully Homomorphic Encryption from (Standard) $\mathsf{LWE}$". SIAM Journal on Computing. 43 (2): 831–871. doi:10.1137/120868669. hdl:1721.1/115488. ISSN 0097-5397. S2CID 8831240.
  39. Brakerski, Zvika; Gentry, Craig; Vaikuntanathan, Vinod (2012). "(Leveled) fully homomorphic encryption without bootstrapping". Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. New York, New York, USA: ACM Press. pp. 309–325. doi:10.1145/2090236.2090262. ISBN 9781450311151. S2CID 2602543.
  40. Fiorini, Samuel; Massar, Serge; Pokutta, Sebastian; Tiwary, Hans Raj; de Wolf, Ronald (2015). "Exponential Lower Bounds for Polytopes in Combinatorial Optimization". Journal of the ACM. 62 (2): 17:1–17:23. arXiv:1111.0837. doi:10.1145/2716307. S2CID 7372000.
  41. Rothvoss, Thomas (2017). "The Matching Polytope has Exponential Extension Complexity". Journal of the ACM. 64 (6): 41:1–41:19. arXiv:1311.2369. doi:10.1145/3127497. S2CID 47045361.
  42. Williams, Ryan (June 2011). "Non-uniform ACC Circuit Lower Bounds". 2011 IEEE 26th Annual Conference on Computational Complexity. IEEE. pp. 115–125. doi:10.1109/ccc.2011.36. ISBN 978-1-4577-0179-5.
  43. Chattopadhyay, Eshan; Zuckerman, David (June 2016). "Explicit two-source extractors and resilient functions". Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing. ACM. doi:10.4007/annals.2019.189.3.
Remove ads

See also

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads