New Horizons

NASA probe that visited Pluto and Kuiper belt object 486958 Arrokoth / From Wikipedia, the free encyclopedia

New Horizons is an interplanetary space probe that was launched as a part of NASA's New Frontiers program.[5] Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institute (SwRI), with a team led by Alan Stern,[6] the spacecraft was launched in 2006 with the primary mission to perform a flyby study of the Pluto system in 2015, and a secondary mission to fly by and study one or more other Kuiper belt objects (KBOs) in the decade to follow, which became a mission to 486958 Arrokoth. It is the fifth space probe to achieve the escape velocity needed to leave the Solar System.

Quick facts: Mission type, Operator, COSPAR ID, SATCAT no....
New Horizons
New Horizons space probe
Mission typeFlyby
(132524 APL · Jupiter · Pluto · 486958 Arrokoth)
OperatorNASA
COSPAR ID2006-001A
SATCAT no.28928
Websitepluto.jhuapl.edu
nasa.gov/newhorizons
Mission durationPrimary mission: 9.5 years
Elapsed: 16 years, 10 months, 18 days
Spacecraft properties
ManufacturerAPL / SwRI
Launch mass478 kg (1,054 lb)[1]
Dry mass401 kg (884 lb)
Payload mass30.4 kg (67 lb)
Dimensions2.2 × 2.1 × 2.7 m (7.2 × 6.9 × 8.9 ft)
Power245 watts
Start of mission
Launch dateJanuary 19, 2006, 19:00:00.221 (2006-01-19UTC19) UTC[2]
RocketAtlas V (551) AV-010[2] + Star 48B 3rd stage
Launch siteCape Canaveral SLC-41
ContractorInternational Launch Services[3]
Orbital parameters
Eccentricity1.41905
Inclination2.23014°
EpochJanuary 1, 2017 (JD 2457754.5)[4]
Flyby of 132524 APL (incidental)
Closest approachJune 13, 2006, 04:05 UTC
Distance101,867 km (63,297 mi)
Flyby of Jupiter (gravity assist)
Closest approachFebruary 28, 2007, 05:43:40 UTC
Distance2,300,000 km (1,400,000 mi)
Flyby of Pluto
Closest approachJuly 14, 2015, 11:49:57 UTC
Distance12,500 km (7,800 mi)
Flyby of 486958 Arrokoth
Closest approachJanuary 1, 2019, 05:33:00 UTC
Distance3,500 km (2,200 mi)
Juno 
 
Close
New Horizons before launch

On January 19, 2006, New Horizons was launched from Cape Canaveral Space Force Station by an Atlas V rocket directly into an Earth-and-solar escape trajectory with a speed of about 16.26 km/s (10.10 mi/s; 58,500 km/h; 36,400 mph). It was the fastest (average speed with respect to Earth) man-made object ever launched from Earth.[7][8][9][10] It is not the fastest speed recorded for a spacecraft, which as of 2021 is that of the Parker Solar Probe. After a brief encounter with asteroid 132524 APL, New Horizons proceeded to Jupiter, making its closest approach on February 28, 2007, at a distance of 2.3 million kilometers (1.4 million miles). The Jupiter flyby provided a gravity assist that increased New Horizons' speed; the flyby also enabled a general test of New Horizons' scientific capabilities, returning data about the planet's atmosphere, moons, and magnetosphere.

Most of the post-Jupiter voyage was spent in hibernation mode to preserve on-board systems, except for brief annual checkouts.[11] On December 6, 2014, New Horizons was brought back online for the Pluto encounter, and instrument check-out began.[12] On January 15, 2015, the spacecraft began its approach phase to Pluto.

On July 14, 2015, at 11:49 UTC, it flew 12,500 km (7,800 mi) above the surface of Pluto,[13][14] which at the time was 34 AU from the Sun,[citation needed] making it the first spacecraft to explore the dwarf planet.[15] In August 2016, New Horizons was reported to have traveled at speeds of more than 84,000 km/h (52,000 mph).[16] On October 25, 2016, at 21:48 UTC, the last of the recorded data from the Pluto flyby was received from New Horizons.[17] Having completed its flyby of Pluto,[18] New Horizons then maneuvered for a flyby of Kuiper belt object 486958 Arrokoth (then nicknamed Ultima Thule),[19][20][21] which occurred on January 1, 2019,[22][23] when it was 43.4 AU from the Sun.[19][20] In August 2018, NASA cited results by Alice on New Horizons to confirm the existence of a "hydrogen wall" at the outer edges of the Solar System. This "wall" was first detected in 1992 by the two Voyager spacecraft.[24][25]