cover image

North magnetic pole

Earth's magnetic pole in the Northern Hemisphere / From Wikipedia, the free encyclopedia

Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about North Magnetic Pole?

Summarize this article for a 10 years old

SHOW ALL QUESTIONS

The north magnetic pole, also known as the magnetic north pole, is a point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downward (in other words, if a magnetic compass needle is allowed to rotate in three dimensions, it will point straight down). There is only one location where this occurs, near (but distinct from) the geographic north pole. The geomagnetic north pole is the northern antipodal pole of an ideal dipole model of the Earth's magnetic field, which is the most closely fitting model of Earth's actual magnetic field.

North_Magnetic_Poles.svg
Location of the north magnetic pole and the north geomagnetic pole in 2017.[1] The magnetic-north of the earth as a magnet is actually on the southern hemisphere: The north side of magnets are by definition attracted to the geographic north, and opposite poles attract.

The north magnetic pole moves over time according to magnetic changes and flux lobe elongation[2] in the Earth's outer core.[3] In 2001, it was determined by the Geological Survey of Canada to lie west of Ellesmere Island in northern Canada at 81°18′N 110°48′W.[4] It was situated at 83°06′N 117°48′W in 2005. In 2009, while still situated within the Canadian Arctic at 84°54′N 131°00′W,[5] it was moving toward Russia at between 55 and 60 km (34 and 37 mi) per year.[6] In 2013, the distance between the north magnetic pole and the geographic north pole was approximately 800 kilometres (500 mi).[7] As of 2021, the pole is projected to have moved beyond the Canadian Arctic to 86.400°N 156.786°E / 86.400; 156.786 (Magnetic North Pole 2021 est).[8][5]

Its southern hemisphere counterpart is the south magnetic pole. Since Earth's magnetic field is not exactly symmetric, the north and south magnetic poles are not antipodal, meaning that a straight line drawn from one to the other does not pass through the geometric center of Earth.

Earth's north and south magnetic poles are also known as magnetic dip poles, with reference to the vertical "dip" of the magnetic field lines at those points.[9]