# Quantum group

## Algebraic construct of interest in theoretical physics / From Wikipedia, the free encyclopedia

#### Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about Quantum group?

Summarize this article for a 10 years old

In mathematics and theoretical physics, the term **quantum group** denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups (which are quasitriangular Hopf algebras), compact matrix quantum groups (which are structures on unital separable C*-algebras), and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.

Algebraic structure → Group theoryGroup theory |
---|

The term "quantum group" first appeared in the theory of quantum integrable systems, which was then formalized by Vladimir Drinfeld and Michio Jimbo as a particular class of Hopf algebra. The same term is also used for other Hopf algebras that deform or are close to classical Lie groups or Lie algebras, such as a "bicrossproduct" class of quantum groups introduced by Shahn Majid a little after the work of Drinfeld and Jimbo.

In Drinfeld's approach, quantum groups arise as Hopf algebras depending on an auxiliary parameter *q* or *h*, which become universal enveloping algebras of a certain Lie algebra, frequently semisimple or affine, when *q* = 1 or *h* = 0. Closely related are certain dual objects, also Hopf algebras and also called quantum groups, deforming the algebra of functions on the corresponding semisimple algebraic group or a compact Lie group.