# Great-circle distance

## Shortest distance between two points on the surface of a sphere / From Wikipedia, the free encyclopedia

#### Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about Spherical distance?

Summarize this article for a 10 year old

The **great-circle distance**, **orthodromic distance**, or **spherical distance** is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing through the sphere's interior is the chord between the points.)

On a curved surface, the concept of straight lines is replaced by a more general concept of geodesics, curves which are locally straight with respect to the surface. Geodesics on the sphere are great circles, circles whose center coincides with the center of the sphere.

Any two distinct points on a sphere that are not antipodal (diametrically opposite) both lie on a unique great circle, which the points separate into two arcs; the length of the shorter arc is the great-circle distance between the points. This arc length is proportional to the central angle between the points, which if measured in radians can be scaled up by the sphere's radius to obtain the arc length. Two antipodal points both lie on infinitely many great circles, each of which they divide into two arcs of length π times the radius.

The determination of the great-circle distance is part of the more general problem of great-circle navigation, which also computes the azimuths at the end points and intermediate way-points. Because the Earth is nearly spherical, great-circle distance formulas applied to longitude and geodetic latitude of points on Earth are accurate to within about 0.5%.^{[1]}