Wind engineering

Subset of mechanical engineering, structural engineering, meteorology, and applied physics / From Wikipedia, the free encyclopedia

Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about Wind load?

Summarize this article for a 10 years old


Wind engineering is a subset of mechanical engineering, structural engineering, meteorology, and applied physics that analyzes the effects of wind in the natural and the built environment and studies the possible damage, inconvenience or benefits which may result from wind. In the field of engineering it includes strong winds, which may cause discomfort, as well as extreme winds, such as in a tornado, hurricane or heavy storm, which may cause widespread destruction. In the fields of wind energy and air pollution it also includes low and moderate winds as these are relevant to electricity production and dispersion of contaminants.

Flow visualization of wind speed contours around a house
Wind engineering covers the aerodynamic effects of buildings
Damaged wind turbines due to hurricane Maria

Wind engineering draws upon meteorology, fluid dynamics, mechanics, geographic information systems, and a number of specialist engineering disciplines, including aerodynamics and structural dynamics.[1] The tools used include atmospheric models, atmospheric boundary layer wind tunnels, and computational fluid dynamics models.

Wind engineering involves, among other topics:

  • Wind impact on structures (buildings, bridges, towers)
  • Wind comfort near buildings
  • Effects of wind on the ventilation system in a building
  • Wind climate for wind energy
  • Air pollution near buildings

Wind engineering may be considered by structural engineers to be closely related to earthquake engineering and explosion protection.

Some sports stadiums such as Candlestick Park and Arthur Ashe Stadium are known for their strong, sometimes swirly winds, which affect the playing conditions.