Group-scheme action

From Wikipedia, the free encyclopedia

In algebraic geometry, an action of a group scheme is a generalization of a group action to a group scheme. Precisely, given a group S-scheme G, a left action of G on an S-scheme X is an S-morphism

such that

  • (associativity) , where is the group law,
  • (unitality) , where is the identity section of G.

A right action of G on X is defined analogously. A scheme equipped with a left or right action of a group scheme G is called a G-scheme. An equivariant morphism between G-schemes is a morphism of schemes that intertwines the respective G-actions.

More generally, one can also consider (at least some special case of) an action of a group functor: viewing G as a functor, an action is given as a natural transformation satisfying the conditions analogous to the above.[1] Alternatively, some authors study group action in the language of a groupoid; a group-scheme action is then an example of a groupoid scheme.

Constructs

The usual constructs for a group action such as orbits generalize to a group-scheme action. Let be a given group-scheme action as above.

  • Given a T-valued point , the orbit map is given as .
  • The orbit of x is the image of the orbit map .
  • The stabilizer of x is the fiber over of the map

Problem of constructing a quotient

Summarize
Perspective

Unlike a set-theoretic group action, there is no straightforward way to construct a quotient for a group-scheme action. One exception is the case when the action is free, the case of a principal fiber bundle.

There are several approaches to overcome this difficulty:

Depending on applications, another approach would be to shift the focus away from a space then onto stuff on a space; e.g., topos. So the problem shifts from the classification of orbits to that of equivariant objects.

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.