Aubin–Lions lemma

From Wikipedia, the free encyclopedia

In mathematics, the Aubin–Lions lemma (or theorem) is the result in the theory of Sobolev spaces of Banach space-valued functions, which provides a compactness criterion that is useful in the study of nonlinear evolutionary partial differential equations. Typically, to prove the existence of solutions one first constructs approximate solutions (for example, by a Galerkin method or by mollification of the equation), then uses the compactness lemma to show that there is a convergent subsequence of approximate solutions whose limit is a solution.

The result is named after the French mathematicians Jean-Pierre Aubin and Jacques-Louis Lions. In the original proof by Aubin,[1] the spaces X0 and X1 in the statement of the lemma were assumed to be reflexive, but this assumption was removed by Simon,[2] so the result is also referred to as the Aubin–Lions–Simon lemma.[3]

Statement of the lemma

Let X0, X and X1 be three Banach spaces with X0  X  X1. Suppose that X0 is compactly embedded in X and that X is continuously embedded in X1. For , let

(i) If then the embedding of W into is compact.

(ii) If and then the embedding of W into is compact.

See also

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.