Top Qs
Timeline
Chat
Perspective

Bernstein–Kushnirenko theorem

On the number of common zeros of Laurent polynomials From Wikipedia, the free encyclopedia

Remove ads
Remove ads

The Bernstein–Kushnirenko theorem (or Bernstein–Khovanskii–Kushnirenko (BKK) theorem[1]), proven by David Bernstein[2] and Anatoliy Kushnirenko [ru][3] in 1975, is a theorem in algebra. It states that the number of non-zero complex solutions of a system of Laurent polynomial equations is equal to the mixed volume of the Newton polytopes of the polynomials , assuming that all non-zero coefficients of are generic.

Remove ads

Statement

Let be a finite subset of Consider the subspace of the Laurent polynomial algebra consisting of Laurent polynomials whose exponents are in . That is:

where for each we have used the shorthand notation to denote the monomial

Now take finite subsets of , with the corresponding subspaces of Laurent polynomials, Consider a generic system of equations from these subspaces, that is:

where each is a generic element in the (finite dimensional vector space)

The Bernstein–Kushnirenko theorem states that the number of solutions of such a system is equal to

where denotes the Minkowski mixed volume and for each is the convex hull of the finite set of points . Clearly, is a convex lattice polytope; it can be interpreted as the Newton polytope of a generic element of the subspace .

In particular, if all the sets are the same, then the number of solutions of a generic system of Laurent polynomials from is equal to

where is the convex hull of and vol is the usual -dimensional Euclidean volume. Note that even though the volume of a lattice polytope is not necessarily an integer, it becomes an integer after multiplying by .

Remove ads

Trivia

Kushnirenko's name is also spelt Kouchnirenko. David Bernstein is a brother of Joseph Bernstein. Askold Khovanskii has found about 15 different proofs of this theorem.[4]

References

See also

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads