Top Qs
Timeline
Chat
Perspective

Bochner's tube theorem

Theorem about holomorphic functions of several complex variables From Wikipedia, the free encyclopedia

Remove ads
Remove ads

In mathematics, Bochner's tube theorem (named for Salomon Bochner) shows that every function holomorphic on a tube domain in can be extended to the convex hull of this domain.

Theorem Let be a connected open set. Then every function holomorphic on the tube domain can be extended to a function holomorphic on the convex hull .

A classic reference is [1] (Theorem 9). See also [2][3] for other proofs.

Remove ads

Generalizations

Summarize
Perspective

The generalized version of this theorem was first proved by Kazlow (1979),[4] also proved by Boivin and Dwilewicz (1998)[5] under more less complicated hypothese.

Theorem Let be a connected submanifold of of class-. Then every continuous CR function on the tube domain can be continuously extended to a CR function on . By "Int ch(S)" we will mean the interior taken in the smallest dimensional space which contains "ch(S)".

Remove ads

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads