Top Qs
Timeline
Chat
Perspective
Borell–TIS inequality
From Wikipedia, the free encyclopedia
Remove ads
In mathematics and probability, the Borell–TIS inequality is a result bounding the probability of a deviation of the uniform norm of a centered Gaussian stochastic process above its expected value. The result is named for Christer Borell and its independent discoverers Boris Tsirelson, Ildar Ibragimov, and Vladimir Sudakov. The inequality has been described as "the single most important tool in the study of Gaussian processes."[1]
Remove ads
Statement
Summarize
Perspective
Let be a topological space, and let be a centered (i.e. mean zero) Gaussian process on , with
almost surely finite, and let
Then[1] and are both finite, and, for each ,
Another related statement which is also known as the Borell-TIS inequality[1] is that, under the same conditions as above,
- ,
and so by symmetry
- .
Remove ads
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads