Top Qs
Timeline
Chat
Perspective

Caratheodory-π solution

From Wikipedia, the free encyclopedia

Remove ads

A Carathéodory-π solution is a generalized solution to an ordinary differential equation. The concept is due to I. Michael Ross and named in honor of Constantin Carathéodory.[1] Its practicality was demonstrated in 2008 by Ross et al.[2] in a laboratory implementation of the concept. The concept is most useful for implementing feedback controls, particularly those generated by an application of Ross' pseudospectral optimal control theory.[3]

Remove ads

Mathematical background

A Carathéodory-π solution addresses the fundamental problem of defining a solution to a differential equation,

when g(x,t) is not differentiable with respect to x. Such problems arise quite naturally[4] in defining the meaning of a solution to a controlled differential equation,

when the control, u, is given by a feedback law,

where the function k(x,t) may be non-smooth with respect to x. Non-smooth feedback controls arise quite often in the study of optimal feedback controls and have been the subject of extensive study going back to the 1960s.[5]

Remove ads

Ross' concept

Summarize
Perspective

An ordinary differential equation,

is equivalent to a controlled differential equation,

with feedback control, . Then, given an initial value problem, Ross partitions the time interval to a grid, with . From to , generate a control trajectory,

to the controlled differential equation,

A Carathéodory solution exists for the above equation because has discontinuities at most in t, the independent variable. At , set and restart the system with ,

Continuing in this manner, the Carathéodory segments are stitched together to form a Carathéodory-π solution.

Remove ads

Engineering applications

A Carathéodory-π solution can be applied towards the practical stabilization of a control system.[6][7] It has been used to stabilize an inverted pendulum,[6] control and optimize the motion of robots,[7][8] slew and control the NPSAT1 spacecraft[3] and produce guidance commands for low-thrust space missions.[2]

See also

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads