Top Qs
Timeline
Chat
Perspective
Cartan–Kuranishi prolongation theorem
From Wikipedia, the free encyclopedia
Remove ads
Given an exterior differential system defined on a manifold M, the Cartan–Kuranishi prolongation theorem says that after a finite number of prolongations the system is either in involution (admits at least one 'large' integral manifold), or is impossible.
History
The theorem is named after Élie Cartan and Masatake Kuranishi. Cartan made several attempts in 1946 to prove the result, but it was in 1957 that Kuranishi provided a proof of Cartan's conjecture.[1]
Applications
This theorem is used in infinite-dimensional Lie theory.
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads