Top Qs
Timeline
Chat
Perspective
Chebyshev rational functions
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In mathematics, the Chebyshev rational functions are a sequence of functions which are both rational and orthogonal. They are named after Pafnuty Chebyshev. A rational Chebyshev function of degree n is defined as:

where Tn(x) is a Chebyshev polynomial of the first kind.
Remove ads
Properties
Summarize
Perspective
Many properties can be derived from the properties of the Chebyshev polynomials of the first kind. Other properties are unique to the functions themselves.
Recursion
Differential equations
Orthogonality

Defining:
The orthogonality of the Chebyshev rational functions may be written:
where cn = 2 for n = 0 and cn = 1 for n ≥ 1; δnm is the Kronecker delta function.
Expansion of an arbitrary function
For an arbitrary function f(x) ∈ L2
ω the orthogonality relationship can be used to expand f(x):
where
Remove ads
Particular values
Remove ads
Partial fraction expansion
References
- Guo, Ben-Yu; Shen, Jie; Wang, Zhong-Qing (2002). "Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval" (PDF). Int. J. Numer. Methods Eng. 53 (1): 65–84. Bibcode:2002IJNME..53...65G. CiteSeerX 10.1.1.121.6069. doi:10.1002/nme.392. S2CID 9208244. Retrieved 2006-07-25.
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads