Top Qs
Timeline
Chat
Perspective

Clarkson's inequalities

From Wikipedia, the free encyclopedia

Remove ads

In mathematics, Clarkson's inequalities, named after James A. Clarkson, are results in the theory of Lp spaces. They give bounds for the Lp-norms of the sum and difference of two measurable functions in Lp in terms of the Lp-norms of those functions individually.

Statement of the inequalities

Summarize
Perspective

Let (X, Σ, μ) be a measure space; let f, g : X  R be measurable functions in Lp. Then, for 2  p < +∞,

For 1 < p < 2,

where

i.e., q = p  (p  1).

Remove ads

References

  • Clarkson, James A. (1936), "Uniformly convex spaces", Transactions of the American Mathematical Society, 40 (3): 396–414, doi:10.2307/1989630, JSTOR 1989630, MR 1501880.
  • Hanner, Olof (1956), "On the uniform convexity of Lp and p", Arkiv för Matematik, 3 (3): 239–244, Bibcode:1956ArM.....3..239H, doi:10.1007/BF02589410, MR 0077087.
  • Friedrichs, K. O. (1970), "On Clarkson's inequalities", Communications on Pure and Applied Mathematics, 23 (4): 603–607, doi:10.1002/cpa.3160230405, MR 0264372.
Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads