| Company |
Year founded |
Method |
Fuel |
Notes |
| Acceleron Fusion (formerly NK Labs, LLC) |
2023 (NK Labs founded 2008) |
Muon-catalyzed |
deuterium–tritium |
[3][4][5] |
| Avalanche Energy |
2018 |
Hybrid: colliding beam, electrostatic confinement, magnetic confinement |
deuterium–tritium |
[6][7] |
| Blue Laser Fusion |
2022 |
Inertial confinement: optical enhancement cavity (OEC) laser |
proton–boron |
[8][9] |
| Commonwealth Fusion Systems |
2018 |
Magnetic confinement: tokamak |
deuterium–tritium |
[10][11] Formerly Compact Fusion Systems, Inc. |
| Cortex Fusion Systems |
2021 |
Inertial confinement: non-thermal, laser |
deuterium–tritium |
[12] |
| Crossfield Fusion Ltd |
2019 |
Closed orbit, velocity resonant systems |
|
[13] Reactor development ended 2021[14][15] |
| CTFusion, Inc |
2015 |
Magnetic confinement: dynomak |
deuterium–tritium |
Ceased trading 2023[16] |
| Deutelio |
2022 |
Magnetic confinement: levitated dipole |
deuterium–deuterium |
[17][15] |
| Electric Fusion Systems, Inc. |
2020 |
Non-thermal: light element electric fusion (LEEF) |
Rydberg matter: proton–lithium7 |
[18][19] |
| EMC2 Fusion |
1985 |
Magnetic confinement: Polywell |
deuterium–tritium |
[20][21][22] |
| Energy Singularity Energy Technology |
2021 |
Magnetic confinement: tokamak |
deuterium–tritium |
[23][24] |
| ENN Energy |
2018 |
Magnetic confinement |
proton–boron |
[25][11] |
| EX-Fusion |
2021 |
Inertial confinement: laser |
deuterium–tritium |
[26][27] |
| First Light Fusion |
2011 |
Inertial confinement: impact |
deuterium–tritium |
[28][29][30][15][31][11] |
| Focused Energy |
2021 |
Inertial confinement |
deuterium–tritium |
[32][15][31][33] |
| Fuse |
2019 |
Magneto-inertial |
deuterium–tritium |
[citation needed] |
| Fusion Power Corporation |
2016 |
Heavy ion |
deuterium–tritium |
Dissolved 2019[34] |
| Gauss Fusion |
2022 |
Magnetic confinement |
deuterium–tritium |
[15] |
| General Atomics Fusion Division |
2022 |
Magnetic confinement |
deuterium–tritium |
[35] |
| General Fusion |
2002 |
Magneto-inertial |
deuterium–tritium |
[11] |
| HB11 Energy |
2017 |
Inertial confinement: non-thermal, laser |
proton–boron |
[36][37][38][39] |
| Helical Fusion |
2021 |
Magnetic confinement: stellarator |
deuterium–tritium |
[40][27] |
| HelicitySpace Corporation |
2018 |
Magneto-inertial |
deuterium–deuterium |
For spaceflight uses[41] |
| Helion Energy |
2013 |
Magneto-inertial |
deuterium–helium3 |
[42] |
| Horne Technologies |
2008 |
Hybrid confinement: magnetic, electrostatic |
deuterium–deuterium, proton–boron |
[43][44][better source needed] |
| HyperJet Fusion |
|
|
|
[11] |
| KMS Fusion |
1969 |
Inertial confinement |
deuterium–tritium |
Closed 1991[45] |
| Kyoto Fusioneering |
2019 |
|
deuterium–tritium |
[27][46] |
| LaserFusionX |
2022 |
Inertial confinement |
deuterium–tritium |
[33] |
| Lockheed Martin |
2010 |
|
|
[47][11] |
| Longview Fusion Energy Systems |
2021 |
Inertial confinement |
deuterium–tritium |
[31][33] |
LPP Fusion, Inc. (Lawrenceville Plasma Physics) |
2003 |
Magnetic confinement pinch: dense plasma focus |
proton–boron |
[48] President, chief scientist: Eric J. Lerner |
| Magneto Inertial Fusion Technology Inc. (MIFTI) |
2009 |
Magneto-inertial |
deuterium–tritium |
Division, US Nuclear Corp[49] |
| Marvel Fusion |
2019 |
Inertial confinement |
proton–boron |
[15][33] |
| Norrønt AS |
2016 (Ultrafusion) 2018 (Norrønt) |
Muon-catalyzed |
deuterium–tritium |
Formerly Ultrafusion Nuclear Power, merged with Norrønt Fusion Energy[50][51] |
| NT-Tao |
2019 |
Magnetic confinement |
deuterium–tritium |
[52] |
| NearStar Fusion |
2021 |
Magneto-inertial |
deuterium–tritium, deuterium–deuterium, proton–boron |
[53][54] |
| Novatron Fusion Group AB |
2019 |
Magnetic confinement: mirror |
deuterium–tritium |
[55][56][57][58] |
| OpenStar Technologies |
2021 |
Magnetic confinement: levitated dipole |
deuterium–deuterium (tritium suppressed) |
[59] |
| Princeton Fusion Systems |
1992 |
Magnetic confinement |
deuterium–helium3 |
[60][11] |
| Proxima Fusion |
2023 |
Magnetic confinement |
deuterium–tritium |
[15] |
| Realta Fusion |
2022 |
Magnetic confinement: tandem mirror |
deuterium–tritium |
[61][62][63] |
| Renaissance Fusion |
2021 |
Magnetic confinement |
deuterium–tritium |
[15] |
| Stellarex, Inc |
2022 |
Magnetic confinement |
deuterium–tritium |
[46] |
| Shine Technologies |
2005 |
Magneto-electrostatic confinement |
deuterium–tritium |
Focus: producing radioisotopes, not energy[64][65] |
| TAE Technologies |
1998 |
Magnetic confinement |
proton–boron |
[66] Formerly Tri Alpha Energy[11] |
| Thea Energy (formerly Princeton Stellarators) |
2022 |
Magnetic confinement: stellarator |
deuterium–tritium |
[67][46] |
| Tokamak Energy |
2009 |
Magnetic confinement: tokamak |
deuterium–tritium |
[68][46] |
| Type One Energy Group |
2019 |
Magnetic confinement: stellarator |
deuterium–tritium |
[69][63] |
| Xcimer Energy Inc. |
2022 |
Inertial confinement: excimer laser |
deuterium–tritium |
[70][31] |
| Zap Energy |
2017 |
Magnetic confinement pinch |
deuterium–tritium |
[71][42] |