Top Qs
Timeline
Chat
Perspective

Complete Fermi–Dirac integral

Mathematical integral From Wikipedia, the free encyclopedia

Remove ads

In mathematics, the complete Fermi–Dirac integral, named after Enrico Fermi and Paul Dirac, for an index j  is defined by

This equals

where is the polylogarithm.

Its derivative is

and this derivative relationship is used to define the Fermi-Dirac integral for nonpositive indices j. Differing notation for appears in the literature, for instance some authors omit the factor . The definition used here matches that in the NIST DLMF.

Remove ads

Special values

The closed form of the function exists for j = 0:

For x = 0, the result reduces to

where is the Dirichlet eta function.

Remove ads

See also

References

  • Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. "3.411.3.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. p. 355. ISBN 978-0-12-384933-5. LCCN 2014010276. ISBN 978-0-12-384933-5.
  • R.B.Dingle (1957). Fermi-Dirac Integrals. Appl.Sci.Res. B6. pp. 225–239.


Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads