Top Qs
Timeline
Chat
Perspective
Natural number
Number used for counting From Wikipedia, the free encyclopedia
Remove ads
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0.[1] Some start counting with 0, defining the natural numbers as the non-negative integers 0, 1, 2, 3, ..., while others start with 1, defining them as the positive integers 1, 2, 3, ... .[a] Some authors acknowledge both definitions whenever convenient.[2] Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the whole numbers refer to all of the integers, including negative integers.[3] The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1.[4]

The natural numbers are used for counting things, like "there are six coins on the table", in which case they are called cardinal numbers. They are also used to put things in order, like "this is the third largest city in the country", which are called ordinal numbers. Natural numbers are also used as labels, like jersey numbers on a sports team, where they serve as nominal numbers and do not have mathematical properties.[5]
The natural numbers form a set, commonly symbolized as a bold N or blackboard bold . Many other number sets are built from the natural numbers. For example, the integers are made by adding 0 and negative numbers. The rational numbers add fractions, and the real numbers add all infinite decimals. Complex numbers add the square root of −1. This chain of extensions canonically embeds the natural numbers in the other number systems.[6][7]
Natural numbers are studied in different areas of math. Number theory looks at things like how numbers divide evenly (divisibility), or how prime numbers are spread out. Combinatorics studies counting and arranging numbered objects, such as partitions and enumerations.
Remove ads
Intuitive concept
Natural numbers arise naturally for counting or ranking. This consists of associating to each counted object a "rank" represented by a unique symbol, which can be a mark on some support, an ordinal numeral (first, second, ...), or a combination of symbols of a numeral system. So, natural numbers may be viewed as an abstraction of these ranks. The basic properties that these ranks must have is formalized by the four first Peano axioms (the fifth axiom is used for proving other properties of natural numbers.
When counting a collection of objects, the choice of the first one is arbitrary. The choice of the second one must be different from the first one, but is otherwise arbitrary, the third one must differ from the first ones, but is otherwise arbitrary; and so on. When counting members of a collection of objects, the final result does not depend on these choices, and is called the number of elements of the collection. So, the natural numbers can be used not only for ranking but also for measuring the size of a collection of objects. This property is a non-immediate consequence of the last Peano axiom, although it was considered as natural or evident for centuries.
Remove ads
History
Summarize
Perspective
Ancient roots

The most primitive method of representing a natural number is to use one's fingers, as in finger counting. Putting down a tally mark for each object is another primitive method. Later, a set of objects could be tested for equality, excess or shortage—by striking out a mark and removing an object from the set.
The first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers. The ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1, 10, and all powers of 10 up to over 1 million. A stone carving from Karnak, dating back from around 1500 BCE and now at the Louvre in Paris, depicts 276 as 2 hundreds, 7 tens, and 6 ones; and similarly for the number 4,622. The Babylonians had a place-value system based essentially on the numerals for 1 and 10, using base sixty, so that the symbol for sixty was the same as the symbol for one—its value being determined from context.[11]
A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation (within other numbers) dates back as early as 700 BCE by the Babylonians, who omitted such a digit when it would have been the last symbol in the number.[b] The Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BCE, but this usage did not spread beyond Mesoamerica.[13][14] The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628 CE. However, 0 had been used as a number in the medieval computus (the calculation of the date of Easter), beginning with Dionysius Exiguus in 525 CE, without being denoted by a numeral. Standard Roman numerals do not have a symbol for 0; instead, nulla (or the genitive form nullae) from nullus, the Latin word for "none", was employed to denote a 0 value.[15]
The first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, sometimes even not as a number at all.[c] Euclid, for example, defined a unit first and then a number as a multitude of units, thus by his definition, a unit is not a number and there are no unique numbers (e.g., any two units from indefinitely many units is a 2).[17] However, in the definition of perfect number which comes shortly afterward, Euclid treats 1 as a number like any other.[18]
Independent studies on numbers also occurred at around the same time in India, China, and Mesoamerica.[19]
Emergence as a term
Nicolas Chuquet used the term progression naturelle (natural progression) in 1484.[20] The earliest known use of "natural number" as a complete English phrase is in 1763.[21][22] The 1771 Encyclopaedia Britannica defines natural numbers in the logarithm article.[22]
Starting at 0 or 1 has long been a matter of definition. In 1727, Bernard Le Bovier de Fontenelle wrote that his notions of distance and element led to defining the natural numbers as including or excluding 0.[23] In 1889, Giuseppe Peano used N for the positive integers and started at 1,[24] but he later changed to using N0 and N1.[25] Historically, most definitions have excluded 0,[22][26][27] but many mathematicians such as George A. Wentworth, Bertrand Russell, Nicolas Bourbaki, Paul Halmos, Stephen Cole Kleene, and John Horton Conway have preferred to include 0.[28][22]
Mathematicians have noted tendencies in which definition is used, such as algebra texts including 0,[22][d] number theory and analysis texts excluding 0,[22][29][30] logic and set theory texts including 0,[31][32][33] dictionaries excluding 0,[22][34] school books (through high-school level) excluding 0, and upper-division college-level books including 0.[1] There are exceptions to each of these tendencies and as of 2023 no formal survey has been conducted. Arguments raised include division by zero[29] and the size of the empty set. Computer languages often start from zero when enumerating items like loop counters and string- or array-elements.[35][36] Including 0 began to rise in popularity in the 1960s.[22] The ISO 31-11 standard included 0 in the natural numbers in its first edition in 1978 and this has continued through its present edition as ISO 80000-2.[37]
Formal construction
In 19th century Europe, there was mathematical and philosophical discussion about the exact nature of the natural numbers. Henri Poincaré stated that axioms can only be demonstrated in their finite application, and concluded that it is "the power of the mind" which allows conceiving of the indefinite repetition of the same act.[38] Leopold Kronecker summarized his belief as "God made the integers, all else is the work of man".[e]
The constructivists saw a need to improve upon the logical rigor in the foundations of mathematics.[f] In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers, thus stating they were not really natural—but a consequence of definitions. Later, two classes of such formal definitions emerged, using set theory and Peano's axioms respectively. Later still, they were shown to be equivalent in most practical applications.
Set-theoretical definitions of natural numbers were initiated by Frege. He initially defined a natural number as the class of all sets that are in one-to-one correspondence with a particular set. However, this definition turned out to lead to paradoxes, including Russell's paradox. To avoid such paradoxes, the formalism was modified so that a natural number is defined as a particular set, and any set that can be put into one-to-one correspondence with that set is said to have that number of elements.[41]
In 1881, Charles Sanders Peirce provided the first axiomatization of natural-number arithmetic.[42][43] In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic,[44] and in 1889, Peano published a simplified version of Dedekind's axioms in his book The principles of arithmetic presented by a new method (Latin: Arithmetices principia, nova methodo exposita). This approach is now called Peano arithmetic. It is based on an axiomatization of the properties of ordinal numbers: each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several weak systems of set theory. One such system is ZFC with the axiom of infinity replaced by its negation.[45] Theorems that can be proved in ZFC but cannot be proved using the Peano Axioms include Goodstein's theorem.[46]
Remove ads
Notation
The set of all natural numbers is standardly denoted N or [2][47] Older texts have occasionally employed J as the symbol for this set.[48]
Since natural numbers may contain 0 or not, it may be important to know which version is referred to. This is often specified by the context, but may also be done by using a subscript or a superscript in the notation, possibly with reference to the integers . Examples include:
Remove ads
Definitions
Summarize
Perspective
There are two standard methods for formally defining natural numbers. The first one is called Peano arithmetic and consists of an autonomous axiomatic theory based on a few axioms called the Peano axioms, named for Giuseppe Peano. The second definition is based on set theory and defines the natural numbers as specific sets. More precisely, each natural number n is defined as an explicitly defined set, whose elements allow counting the elements of other sets, in the sense that the sentence "a set S has n elements" means that there exists a one to one correspondence between the two sets n and S.
The sets used to define natural numbers satisfy the Peano axioms. It follows that every theorem that can be stated and proved in Peano arithmetic can also be proved in set theory. However, the two definitions are not equivalent, as there are theorems that can be stated in terms of Peano arithmetic and proved in set theory, which are not provable inside Peano arithmetic. A probable example is Fermat's Last Theorem.
The definition of the integers as sets satisfying the Peano axioms provide a model of Peano arithmetic inside set theory. An important consequence is that, if set theory is consistent (as is usually assumed), then Peano arithmetic is consistent. In other words, if a contradiction could be proved in Peano arithmetic, then set theory would be logically inconsistent.
Peano axioms
The five Peano axioms are the following:[55][g]
- 0 is a natural number.
- Every natural number has a successor which is also a natural number.
- 0 is not the successor of any natural number.
- If the successor of equals the successor of , then equals .
- The axiom of induction: If a statement is true of 0, and if the truth of that statement for a number implies its truth for the successor of that number, then the statement is true for every natural number.
These are not the original axioms published by Peano, but are named in his honor. Some forms of the Peano axioms have 1 in place of 0. In ordinary arithmetic, the successor of is .
Set-theoretic definition
Intuitively, the natural number n is the common property of all sets that have n elements. So, it seems natural to define n as an equivalence class under the relation "can be made in one to one correspondence". This does not work in all set theories, as such an equivalence class would not be a set[h] (because of Russell's paradox). The standard solution is to define a particular set with n elements that will be called the natural number n.
The following definition was first published by John von Neumann,[56] although Levy attributes the idea to unpublished work of Zermelo in 1916.[57] As this definition extends to infinite set as a definition of ordinal number, the sets considered below are sometimes called von Neumann ordinals.
The definition proceeds as follows:
- Call 0 = { }, the empty set.
- Define the successor S(a) of any set a by S(a) = a ∪ {a}.
- By the axiom of infinity, there exist sets which contain 0 and are closed under the successor function. Such sets are said to be inductive. The intersection of all inductive sets is still an inductive set.
- This intersection is the set of the natural numbers.
It follows that the natural numbers are defined iteratively as follows:
- 0 = { },
- 1 = 0 ∪ {0} = {0} = {{ }},
- 2 = 1 ∪ {1} = {0, 1} = {{ }, {{ }}},
- 3 = 2 ∪ {2} = {0, 1, 2} = {{ }, {{ }}, {{ }, {{ }}}},
- n = n−1 ∪ {n−1} = {0, 1, ..., n−1} = {{ }, {{ }}, ..., {{ }, {{ }}, ...}},
- etc.
It can be checked that the natural numbers satisfy the Peano axioms.
With this definition, given a natural number n, the sentence "a set S has n elements" can be formally defined as "there exists a bijection from n to S." This formalizes the operation of counting the elements of S. Also, n ≤ m if and only if n is a subset of m. In other words, the set inclusion defines the usual total order on the natural numbers. This order is a well-order.
It follows from the definition that each natural number is equal to the set of all natural numbers less than it. This definition, can be extended to the von Neumann definition of ordinals for defining all ordinal numbers, including the infinite ones: "each ordinal is the well-ordered set of all smaller ordinals."
If one does not accept the axiom of infinity, the natural numbers may not form a set. Nevertheless, the natural numbers can still be individually defined as above, and they still satisfy the Peano axioms.
There are other set theoretical constructions. In particular, Ernst Zermelo provided a construction that is nowadays only of historical interest, and is sometimes referred to as Zermelo ordinals.[57] It consists in defining 0 as the empty set, and S(a) = {a}.
With this definition each nonzero natural number is a singleton set. So, the property of the natural numbers to represent cardinalities is not directly accessible; only the ordinal property (being the nth element of a sequence) is immediate. Unlike von Neumann's construction, the Zermelo ordinals do not extend to infinite ordinals.
Remove ads
Properties
Summarize
Perspective
This section uses the convention .
Addition
Given the set of natural numbers and the successor function sending each natural number to the next one, one can define addition of natural numbers recursively by setting a + 0 = a and a + S(b) = S(a + b) for all a, b. Thus, a + 1 = a + S(0) = S(a+0) = S(a), a + 2 = a + S(1) = S(a+1) = S(S(a)), and so on. The algebraic structure is a commutative monoid with identity element 0. It is a free monoid on one generator. This commutative monoid satisfies the cancellation property, so it can be embedded in a group. The smallest group containing the natural numbers is the integers.
If 1 is defined as S(0), then b + 1 = b + S(0) = S(b + 0) = S(b). That is, b + 1 is simply the successor of b.
Multiplication
Analogously, given that addition has been defined, a multiplication operator can be defined via a × 0 = 0 and a × S(b) = (a × b) + a. This turns into a free commutative monoid with identity element 1; a generator set for this monoid is the set of prime numbers.
Relationship between addition and multiplication
Addition and multiplication are compatible, which is expressed in the distribution law: a × (b + c) = (a × b) + (a × c). These properties of addition and multiplication make the natural numbers an instance of a commutative semiring. Semirings are an algebraic generalization of the natural numbers where multiplication is not necessarily commutative. The lack of additive inverses, which is equivalent to the fact that is not closed under subtraction (that is, subtracting one natural from another does not always result in another natural), means that is not a ring; instead it is a semiring (also known as a rig).
If the natural numbers are taken as "excluding 0", and "starting at 1", the definitions of + and × are as above, except that they begin with a + 1 = S(a) and a × 1 = a. Furthermore, has no identity element.
Order
In this section, juxtaposed variables such as ab indicate the product a × b,[58] and the standard order of operations is assumed.
A total order on the natural numbers is defined by letting a ≤ b if and only if there exists another natural number c where a + c = b. This order is compatible with the arithmetical operations in the following sense: if a, b and c are natural numbers and a ≤ b, then a + c ≤ b + c and ac ≤ bc.
An important property of the natural numbers is that they are well-ordered: every non-empty set of natural numbers has a least element. The rank among well-ordered sets is expressed by an ordinal number; for the natural numbers, this is denoted as ω (omega).
Division
In this section, juxtaposed variables such as ab indicate the product a × b, and the standard order of operations is assumed.
While it is in general not possible to divide one natural number by another and get a natural number as result, the procedure of division with remainder or Euclidean division is available as a substitute: for any two natural numbers a and b with b ≠ 0 there are natural numbers q and r such that
The number q is called the quotient and r is called the remainder of the division of a by b. The numbers q and r are uniquely determined by a and b. This Euclidean division is key to the several other properties (divisibility), algorithms (such as the Euclidean algorithm), and ideas in number theory.
Algebraic properties satisfied by the natural numbers
The addition (+) and multiplication (×) operations on natural numbers as defined above have several algebraic properties:
- Closure under addition and multiplication: for all natural numbers a and b, both a + b and a × b are natural numbers.[59]
- Associativity: for all natural numbers a, b, and c, a + (b + c) = (a + b) + c and a × (b × c) = (a × b) × c.[60]
- Commutativity: for all natural numbers a and b, a + b = b + a and a × b = b × a.[61]
- Existence of identity elements: for every natural number a, a + 0 = a and a × 1 = a.
- If the natural numbers are taken as "excluding 0", and "starting at 1", then for every natural number a, a × 1 = a. However, the "existence of additive identity element" property is not satisfied
- Distributivity of multiplication over addition for all natural numbers a, b, and c, a × (b + c) = (a × b) + (a × c).
- No nonzero zero divisors: if a and b are natural numbers such that a × b = 0, then a = 0 or b = 0 (or both).
Remove ads
Generalizations
Natural numbers are broadly used in two ways: to quantify and to order. A number used to represent the quantity of objects in a collection ("there are 6 coins on the table") is called a cardinal numeral, while a number used to order individual objects within a collection ("she finished 6th in the race") is an ordinal numeral.
These two uses of natural numbers apply only to finite sets. Georg Cantor discovered at the end of the 19th century that both uses of natural numbers can be generalized to infinite sets, but that they lead to two different concepts of "infinite" numbers, the cardinal numbers and the ordinal numbers.
Other generalizations of natural numbers are discussed in Number § Extensions of the concept.
Remove ads
See also
- Canonical representation of a positive integer – Representation of a number as a product of primes
- Countable set – Mathematical set that can be enumerated
- Sequence – Function of the natural numbers in another set
- Ordinal number – Generalization of "n-th" to infinite cases
- Cardinal number – Size of a possibly infinite set
- Set-theoretic definition of natural numbers – Axiom(s) of Set Theory
Remove ads
Notes
- This convention is used, for example, in Euclid's Elements, see D. Joyce's web edition of Book VII.[16]
- Mac Lane & Birkhoff (1999, p. 15) include zero in the natural numbers: 'Intuitively, the set of all natural numbers may be described as follows: contains an "initial" number 0; ...'. They follow that with their version of the Peano's axioms.
- Hamilton (1988, pp. 117 ff) calls them "Peano's Postulates" and begins with "1. 0 is a natural number."
Halmos (1974, p. 46) uses the language of set theory instead of the language of arithmetic for his five axioms. He begins with "(I) 0 ∈ ω (where, of course, 0 = ∅" (ω is the set of all natural numbers).
Morash (1991) gives "a two-part axiom" in which the natural numbers begin with 1. (Section 10.1: An Axiomatization for the System of Positive Integers) - In some set theories, e.g., New Foundations, a universal set exists and Russel's paradox cannot be formulated.
Remove ads
References
Bibliography
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads