Top Qs
Timeline
Chat
Perspective
Cuspidal representation
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In number theory, cuspidal representations are certain representations of algebraic groups that occur discretely in spaces. The term cuspidal is derived, at a certain distance, from the cusp forms of classical modular form theory. In the contemporary formulation of automorphic representations, representations take the place of holomorphic functions; these representations may be of adelic algebraic groups.
When the group is the general linear group , the cuspidal representations are directly related to cusp forms and Maass forms. For the case of cusp forms, each Hecke eigenform (newform) corresponds to a cuspidal representation.
Remove ads
Formulation
Summarize
Perspective
Let G be a reductive algebraic group over a number field K and let A denote the adeles of K. The group G(K) embeds diagonally in the group G(A) by sending g in G(K) to the tuple (gp)p in G(A) with g = gp for all (finite and infinite) primes p. Let Z denote the center of G and let ω be a continuous unitary character from Z(K) \ Z(A)× to C×. Fix a Haar measure on G(A) and let L20(G(K) \ G(A), ω) denote the Hilbert space of complex-valued measurable functions, f, on G(A) satisfying
- f(γg) = f(g) for all γ ∈ G(K)
- f(gz) = f(g)ω(z) for all z ∈ Z(A)
- for all unipotent radicals, U, of all proper parabolic subgroups of G(A) and g ∈ G(A).
The vector space L20(G(K) \ G(A), ω) is called the space of cusp forms with central character ω on G(A). A function appearing in such a space is called a cuspidal function.
A cuspidal function generates a unitary representation of the group G(A) on the complex Hilbert space generated by the right translates of f. Here the action of g ∈ G(A) on is given by
- .
The space of cusp forms with central character ω decomposes into a direct sum of Hilbert spaces
where the sum is over irreducible subrepresentations of L20(G(K) \ G(A), ω) and the mπ are positive integers (i.e. each irreducible subrepresentation occurs with finite multiplicity). A cuspidal representation of G(A) is such a subrepresentation (π, Vπ) for some ω.
The groups for which the multiplicities mπ all equal one are said to have the multiplicity-one property.
Remove ads
See also
References
- James W. Cogdell, Henry Hyeongsin Kim, Maruti Ram Murty. Lectures on Automorphic L-functions (2004), Section 5 of Lecture 2.
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads