Dilation (metric space)
From Wikipedia, the free encyclopedia
In mathematics, a dilation is a function from a metric space into itself that satisfies the identity
for all points , where is the distance from to and is some positive real number.[1]
In Euclidean space, such a dilation is a similarity of the space.[2] Dilations change the size but not the shape of an object or figure.
Every dilation of a Euclidean space that is not a congruence has a unique fixed point[3] that is called the center of dilation.[4] Some congruences have fixed points and others do not.[5]
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.