Top Qs
Timeline
Chat
Perspective
Donaldson theory
Study in mathematical gauge theory From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In mathematics, and especially gauge theory, Donaldson theory is the study of the topology of smooth 4-manifolds using moduli spaces of anti-self-dual instantons. It was started by Simon Donaldson (1983) who proved Donaldson's theorem restricting the possible quadratic forms on the second cohomology group of a compact simply connected 4-manifold. Important consequences of this theorem include the existence of an Exotic R4 and the failure of the smooth h-cobordism theorem in 4 dimensions. The results of Donaldson theory depend therefore on the manifold having a differential structure, and are largely false for topological 4-manifolds.
Many of the theorems in Donaldson theory can now be proved more easily using Seiberg–Witten theory, though there are a number of open problems remaining in Donaldson theory, such as the Witten conjecture and the Atiyah–Floer conjecture.
Remove ads
See also
References
- Donaldson, Simon (1983), "An Application of Gauge Theory to Four Dimensional Topology", Journal of Differential Geometry, 18 (2): 279–315, MR 0710056.
- Donaldson, S. K.; Kronheimer, P. B. (1997), The Geometry of Four-Manifolds, Oxford Mathematical Monographs, Oxford: Clarendon Press, ISBN 0-19-850269-9.
- Freed, D. S.; Uhlenbeck, K. K. (1984), Instantons and four-manifolds, New York: Springer, ISBN 0-387-96036-8.
- Scorpan, A. (2005), The wild world of 4-manifolds, Providence: American Mathematical Society, ISBN 0-8218-3749-4.
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads