Top Qs
Timeline
Chat
Perspective
DyLight Fluor
From Wikipedia, the free encyclopedia
Remove ads
The DyLight Fluor family of fluorescent dyes are produced by Dyomics in collaboration with Thermo Fisher Scientific.[4] DyLight dyes are typically used in biotechnology and research applications as biomolecule, cell and tissue labels for fluorescence microscopy, cell biology or molecular biology.
![]() | The topic of this article may not meet Wikipedia's general notability guideline. (November 2024) |
Remove ads
Applications
Historically, fluorophores such as fluorescein, rhodamine, Cy3 and Cy5 have been used in a wide variety of applications. These dyes have limitations for use in microscopy and other applications that require exposure to an intense light source such as a laser, because they photobleach quickly (however, bleaching can be reduced at least 10 fold using oxygen scavenging). DyLight Fluors have comparable excitation and emission spectra and are claimed to be more photostable, brighter, and less pH-sensitive. The excitation and emission spectra of the DyLight Fluor series cover much of the visible spectrum and extend into the infrared region, allowing detection using most fluorescence microscopes, as well as infrared imaging systems.[1][2]
Remove ads
Synthesis
DyLight Fluors are synthesized through sulfonate addition to coumarin, xanthene (such as fluorescein and rhodamine), and cyanine dyes. Sulfonation makes DyLight dyes negatively charged and hydrophilic. DyLight Fluors are commercially available as reactive succinimidyl-esters for labeling proteins through lysine residues, and as maleimide derivatives for labeling proteins through cysteine residues. Antibodies conjugated are also available from several companies.
Remove ads
Alternatives
Similar lines of fluorescent dyes provide an alternative to the DyLight Dyes (see also the list in Category:Fluorescent dyes).
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads