Top Qs
Timeline
Chat
Perspective

Eells–Kuiper manifold

From Wikipedia, the free encyclopedia

Remove ads
Remove ads

In mathematics, an Eells–Kuiper manifold is a compactification of by a sphere of dimension , where , or . It is named after James Eells and Nicolaas Kuiper.

If , the Eells–Kuiper manifold is diffeomorphic to the real projective plane . For it is simply-connected and has the integral cohomology structure of the complex projective plane (), of the quaternionic projective plane () or of the Cayley projective plane ().

Remove ads

Properties

Summarize
Perspective

These manifolds are important in both Morse theory and foliation theory:

Theorem:[1] Let be a connected closed manifold (not necessarily orientable) of dimension . Suppose admits a Morse function of class with exactly three singular points. Then is a Eells–Kuiper manifold.

Theorem:[2] Let be a compact connected manifold and a Morse foliation on . Suppose the number of centers of the foliation is more than the number of saddles . Then there are two possibilities:

  • , and is homeomorphic to the sphere ,
  • , and is an Eells–Kuiper manifold, or .
Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads