Top Qs
Timeline
Chat
Perspective

Erdős cardinal

From Wikipedia, the free encyclopedia

Remove ads

In mathematics, an Erdős cardinal, also called a partition cardinal is a certain kind of large cardinal number introduced by Paul Erdős and András Hajnal (1958).

A cardinal is called -Erdős if for every function , there is a set of order type that is homogeneous for . In the notation of the partition calculus, is -Erdős if

.

Under this definition, any cardinal larger than the least -Erdős cardinal is -Erdős.

The existence of zero sharp implies that the constructible universe satisfies "for every countable ordinal , there is an -Erdős cardinal". In fact, for every indiscernible , satisfies "for every ordinal , there is an -Erdős cardinal in " (the Lévy collapse to make countable).

However, the existence of an -Erdős cardinal implies existence of zero sharp. If is the satisfaction relation for (using ordinal parameters), then the existence of zero sharp is equivalent to there being an -Erdős ordinal with respect to . Thus, the existence of an -Erdős cardinal implies that the axiom of constructibility is false.

The least -Erdős cardinal is not weakly compact,[1]p. 39. nor is the least -Erdős cardinal.[1]p. 39

If is -Erdős, then it is -Erdős in every transitive model satisfying " is countable."

Remove ads

Dodd's Notion of Erdős Cardinals

For a limit ordinal , a cardinal is less often called -Erdős if for every closed unbounded and every function such that for all , there is a set of order-type that is homogeneous for .[2]p. 138.

An equivalent definition is that is -Erdős if for any , there is a set of order-type of order-indiscernibles for the structure such that:

  • for every , , and
  • for every , the set forms a set of order-indiscernibles for the structure .

The least cardinal to satisfy the partition relation is still -Erdős under this definition. Every -Erdős cardinal is an inaccessible limit of ineffable cardinals.[3]

Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads